cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023918 Theta series of A*_6 lattice.

Original entry on oeis.org

1, 0, 0, 14, 0, 42, 70, 42, 0, 0, 210, 0, 294, 294, 210, 0, 0, 504, 0, 630, 882, 350, 0, 0, 1190, 0, 1470, 1148, 882, 0, 0, 1680, 0, 1708, 2520, 1050, 0, 0, 3150, 0, 3570, 2940, 1750, 0, 0, 3066, 0, 3864, 4774, 2100, 0, 0, 6174, 0, 5740, 5124, 3570, 0, 0, 6090
Offset: 0

Views

Author

Keywords

Comments

Positions of nonzero entries seem to be A047328. - Andrey Zabolotskiy, Nov 10 2021

Examples

			1 + 14*x^3 + 42*x^5 + 70*x^6 + 42*x^7 + 210*x^10 + 294*x^12 + 294*x^13 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 114.

Crossrefs

Cf. A008446.
Cf. theta series of lattices A*_0, A*_1, A*_2, A*_3, A*_4...: A000007, A000122, A004016, A004013, A023916, A023917, this sequence, A023919-A023936.
Cf. A047328.

Programs

  • Mathematica
    a[n_] := Module[{A, A7}, A = x*O[x]^n; A7 = QPochhammer[x^7 + A]; A = QPochhammer[x + A]; SeriesCoefficient[A^7 / A7 + 7 * x * (A * A7)^3 + 7 * x^2 * A7^7 / A, {x, 0, n}]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Nov 05 2015, adapted from Michael Somos's PARI script *)
  • PARI
    {a(n) = local(A, A7); if( n<0, 0, A = x * O(x^n); A7 = eta(x^7 + A); A = eta(x + A); polcoeff( A^7 / A7 + 7 * x * (A * A7)^3 + 7 * x^2 * A7^7 / A, n))}; /* Michael Somos, Jan 29 2011 */

Formula

Expansion of f(-x)^7 / f(-x^7) + 7 * x * f(-x)^3 * f(-x^7)^3 + 7 * x^2 * f(-x^7)^7 / f(-x) in powers of x where f() is a Ramanujan theta function. - Michael Somos, Jan 29 2011
a(7*n) = A008446(n). a(7*n + 1) = a(7*n + 2) = a(7*n + 4) = 0. - Michael Somos, Jan 29 2011