cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024037 a(n) = 4^n - n.

Original entry on oeis.org

1, 3, 14, 61, 252, 1019, 4090, 16377, 65528, 262135, 1048566, 4194293, 16777204, 67108851, 268435442, 1073741809, 4294967280, 17179869167, 68719476718, 274877906925, 1099511627756, 4398046511083, 17592186044394, 70368744177641, 281474976710632, 1125899906842599
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. numbers of the form k^n - n: A000325 (k=2), A024024 (k=3), this sequence (k=4), A024050 (k=5), A024063 (k=6), A024076 (k=7), A024089 (k=8), A024102 (k=9), A024115 (k=10), A024128 (k=11), A024141 (k=12).
Cf. A140660 (first differences).

Programs

  • Magma
    [4^n - n: n in [0..35]]; // Vincenzo Librandi, May 13 2011
    
  • Magma
    I:=[1, 3, 14]; [n le 3 select I[n] else 6*Self(n-1)-9*Self(n-2)+4*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 16 2013
    
  • Mathematica
    Table[4^n - n, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - 3 x + 5 x^2) / ((1 - 4 x) (1 - x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 16 2013 *)
  • PARI
    a(n)=4^n-n \\ Charles R Greathouse IV, Sep 24 2015

Formula

From Vincenzo Librandi, Jun 16 2013: (Start)
G.f.: (1 - 3*x + 5*x^2)/((1 - 4*x)*(1 - x)^2).
a(n) = 6*a(n-1) - 9*a(n-2) + 4*a(n-3). (End)
E.g.f.: exp(x)*(exp(3*x) - x). - Elmo R. Oliveira, Sep 10 2024