A024117 a(n) = 10^n - n^3.
1, 9, 92, 973, 9936, 99875, 999784, 9999657, 99999488, 999999271, 9999999000, 99999998669, 999999998272, 9999999997803, 99999999997256, 999999999996625, 9999999999995904, 99999999999995087, 999999999999994168, 9999999999999993141, 99999999999999992000
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Index entries for linear recurrences with constant coefficients, signature (14,-46,64,-41,10).
Programs
-
Magma
[10^n-n^3: n in [0..20]]; // Vincenzo Librandi, Jun 30 2011
-
PARI
Vec((1 - 5*x + 12*x^2 + 35*x^3 + 11*x^4) / ((1 - x)^4*(1 - 10*x)) + O(x^30)) \\ Colin Barker, Oct 05 2018
Formula
From Colin Barker, Oct 05 2018: (Start)
G.f.: (1 - 5*x + 12*x^2 + 35*x^3 + 11*x^4) / ((1 - x)^4*(1 - 10*x)).
a(n) = 14*a(n-1) - 46*a(n-2) + 64*a(n-3) - 41*a(n-4) + 10*a(n-5) for n>4.
(End)