A024172 Integer part of ((3rd elementary symmetric function of 1,2,..,n)/(2nd elementary symmetric function of 1,2,...,n)).
0, 0, 1, 2, 4, 6, 8, 10, 13, 16, 20, 24, 28, 33, 38, 43, 48, 54, 60, 67, 74, 81, 89, 97, 105, 113, 122, 131, 141, 151, 161, 172, 183, 194, 205, 217, 229, 242, 255, 268, 282, 296, 310, 324
Offset: 2
Keywords
Examples
a(3) = floor(6/11) = 0; a(4) = floor(50/35) = 1. - _R. J. Mathar_, Sep 15 2009
Links
- Ivan Neretin, Table of n, a(n) for n = 2..10000
Programs
-
GAP
List([2..50],n->Int((1/2)*n*(n-2)*(n+1)/(3*n+2))); # Muniru A Asiru, May 19 2018
-
Maple
seq(floor((1/2)*n*(n-2)*(n+1)/(3*n+2)),n=2..50); # Muniru A Asiru, May 19 2018
-
Mathematica
Table[Floor[1/2 (n - 2) n (n + 1)/ (3 n + 2)], {n, 2, 45}] (* Ivan Neretin, May 19 2018 *)
Formula
Empirical g.f.: x^4*(x^4-x^3+x^2-x+1)*(x^5-x^3-x^2-x-1) / ((x-1)^3*(x^2+x+1)*(x^6+x^3+1)). - Colin Barker, Aug 16 2014
a(n) = floor((1/2)*(n - 2)*n*(n + 1)/(3*n + 2)).
Extensions
Offset set to 2 by R. J. Mathar, Sep 15 2009