A024174 a(n) is floor((4th elementary symmetric function of 1,2,..,n)/(3rd elementary symmetric function of 1,2,...,n)).
0, 0, 1, 2, 3, 4, 6, 8, 10, 13, 16, 19, 22, 25, 29, 33, 37, 42, 47, 52, 57, 62, 68, 74, 80, 87, 94, 101, 108, 115, 123, 131, 139, 148, 157, 166, 175, 184, 194, 204, 214, 225, 236, 247, 258, 269, 281, 293, 305, 318, 331, 344, 357, 370, 384, 398, 412, 427, 442
Offset: 3
Keywords
Examples
G.f. = x^5 + 2*x^6 + 3*x^7 + 4*x^8 + 6*x^9 + 8*x^10 + 10*x^11 + 13*x^12 + ...
Links
- Ivan Neretin, Table of n, a(n) for n = 3..10000
Programs
-
Mathematica
Table[Floor[(n - 3) (15 n^3 + 15 n^2 - 10 n - 8)/(120 n (n + 1))], {n, 3, 45}] (* Ivan Neretin, Nov 25 2016 *) Insert[Table[Floor[1/8 (-2 - 3 n + n^2)], {n, 4, 45}], 0, 1] (* Ralf Steiner, Oct 27 2021 *)
-
PARI
{a(n) = if( n<4, 0, (n-3) * (15*n^3 + 15*n^2 - 10*n - 8) \ (120 * n * (n+1)))}; /* Michael Somos, Nov 25 2016 */
Formula
Empirical g.f.: x^5*(x^7-2*x^6+2*x^5-2*x^4+x^3-x^2+x-1) / ((x-1)^3*(x^2+1)*(x^4+1)). - Colin Barker, Aug 16 2014
a(n) = floor((n - 3)*(15n^3 + 15n^2 - 10n - 8)/(120*n*(n + 1))). - Ivan Neretin, Nov 25 2016
a(n) = floor((A000217(n-2)/2 - 1)/2) = floor((n^2 - 3*n - 2)/8), n >= 4. - Ralf Steiner, Oct 25 2021
Extensions
Offset set to 3 by R. J. Mathar, Sep 23 2016