cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024174 a(n) is floor((4th elementary symmetric function of 1,2,..,n)/(3rd elementary symmetric function of 1,2,...,n)).

Original entry on oeis.org

0, 0, 1, 2, 3, 4, 6, 8, 10, 13, 16, 19, 22, 25, 29, 33, 37, 42, 47, 52, 57, 62, 68, 74, 80, 87, 94, 101, 108, 115, 123, 131, 139, 148, 157, 166, 175, 184, 194, 204, 214, 225, 236, 247, 258, 269, 281, 293, 305, 318, 331, 344, 357, 370, 384, 398, 412, 427, 442
Offset: 3

Views

Author

Keywords

Examples

			G.f. = x^5 + 2*x^6 + 3*x^7 + 4*x^8 + 6*x^9 + 8*x^10 + 10*x^11 + 13*x^12 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[Floor[(n - 3) (15 n^3 + 15 n^2 - 10 n - 8)/(120 n (n + 1))], {n, 3, 45}] (* Ivan Neretin, Nov 25 2016 *)
    Insert[Table[Floor[1/8 (-2 - 3 n + n^2)], {n, 4, 45}], 0, 1] (* Ralf Steiner, Oct 27 2021 *)
  • PARI
    {a(n) = if( n<4, 0, (n-3) * (15*n^3 + 15*n^2 - 10*n - 8) \ (120 * n * (n+1)))}; /* Michael Somos, Nov 25 2016 */

Formula

Empirical g.f.: x^5*(x^7-2*x^6+2*x^5-2*x^4+x^3-x^2+x-1) / ((x-1)^3*(x^2+1)*(x^4+1)). - Colin Barker, Aug 16 2014
a(n) = floor( A000915(n-3)/A001303(n-2) ). - R. J. Mathar, Sep 23 2016
a(n) = floor((n - 3)*(15n^3 + 15n^2 - 10n - 8)/(120*n*(n + 1))). - Ivan Neretin, Nov 25 2016
a(n) = floor((A000217(n-2)/2 - 1)/2) = floor((n^2 - 3*n - 2)/8), n >= 4. - Ralf Steiner, Oct 25 2021

Extensions

Offset set to 3 by R. J. Mathar, Sep 23 2016