cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024202 a(n) = [ (3rd elementary symmetric function of S(n))/(first elementary symmetric function of S(n)) ], where S(n) = {first n+2 odd positive integers}.

Original entry on oeis.org

1, 11, 38, 96, 205, 385, 662, 1068, 1635, 2401, 3410, 4706, 6339, 8365, 10840, 13826, 17391, 21603, 26536, 32270, 38885, 46467, 55108, 64900, 75941, 88335, 102186, 117604, 134705, 153605, 174426, 197296, 222343, 249701, 279510, 311910, 347047, 385073
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A024197.

Programs

  • Maple
    f:= proc(n)
      if n mod 3 = 1 then (n^4+4*n^3+4*n^2+n-4)/6
      else n*(n+1)*(n^2+3*n+1)/6
      fi
    end proc:
    map(f, [$1..100]); # Robert Israel, Dec 30 2016
  • Mathematica
    Table[Floor[n*(n + 1)*(n^2 + 3*n + 1)/6], {n, 1, 50}] (* G. C. Greubel, Dec 30 2016 *)
  • PARI
    for(n=1,25, print1(floor(n*(n+1)*(n^2+3*n+1)/6), ", ")) \\ G. C. Greubel, Dec 30 2016

Formula

Empirical g.f.: x*(x^4-5*x^3-7*x-1) / ((x-1)^5*(x^2+x+1)). - Colin Barker, Aug 15 2014
From Robert Israel, Dec 30 2016: (Start)
a(n) = floor(A024197(n)/(n+2)^2) = floor(n*(n+1)*(n^2+3*n+1)/6).
a(n) = (n^4+4*n^3+4*n^2+n-4)/6 if n == 1 (mod 3).
Otherwise a(n) = n*(n+1)*(n^2+3*n+1)/6.
The empirical g.f. can be obtained from this. (End)