A024210 Number of terms in n-th derivative of a function composed with itself 10 times.
1, 1, 10, 55, 265, 1045, 3817, 12583, 39148, 114235, 318857, 850576, 2190850, 5451721, 13184711, 31023842, 71286349, 160139911, 352574213, 761567304, 1616713932, 3376143283, 6944345483, 14080091227, 28169087367, 55644767253, 108617341172, 209626751905
Offset: 0
Keywords
References
- W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- W. C. Yang, Derivatives are essentially integer partitions, Discrete Mathematics, 222(1-3), July 2000, 235-245.
Crossrefs
Programs
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n < k, 0, If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k - j], {j, 0, Min[n/i, k]}]]]]; a[n_, k_] := a[n, k] = If[k == 1, 1, Sum[b[n, n, i]*a[i, k-1], {i, 0, n}]]; a[n_] := a[n, 10]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 28 2017, after Alois P. Heinz *)
Formula
If a(n,m) = number of terms in m-derivative of a function composed with itself n times, p(n,k) = number of partitions of n into k parts, then a(n,m) = sum_{i=0..m} p(m,i)*a(n-1,i).