cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A296839 Expansion of e.g.f. tan(x*tan(x/2)) (even powers only).

Original entry on oeis.org

0, 1, 1, 33, 437, 22205, 978873, 81005113, 7356832669, 949918117653, 142805534055905, 27120922891214801, 6016195462632487941, 1592800634594574194413, 486576430503128985793417, 171866951067212728072402665, 69025662074064538734826793453
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 21 2017

Keywords

Examples

			tan(x*tan(x/2)) = x^2/2! + x^4/4! + 33*x^6/6! + 437*x^8/8! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[Tan[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] tan(x*tan(x/2)).
a(n) ~ c * d^n * n^(2*n + 1/2) / exp(2*n), where d = 16/Pi^2 = 1.621138938277404343102071411355642222469740394755... is the root of the equation tan(1/sqrt(d)) = Pi*sqrt(d)/4 and c = 1.75568815831... - Vaclav Kotesovec, Dec 21 2017, updated Mar 16 2024

A009707 Expansion of e.g.f. tan(tan(x)*x) (even powers only).

Original entry on oeis.org

0, 2, 8, 336, 15616, 1450240, 185032704, 33566984192, 7971973332992, 2424984197529600, 915532582868746240, 420569934453637906432, 230845747512083447021568, 149228982402223336708898816
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[(CoefficientList[Series[Tan[x*Tan[x]], {x, 0, 2*nmax}], x] * Range[0, 2 nmax]!)[[n]], {n, 1, 2*nmax + 1, 2}] (* Vaclav Kotesovec, Dec 21 2017 *)

Formula

a(n) ~ c * d^n * n^(2*n + 1/2) / exp(2*n), where d = 3.9786913954409425781217887822690623430980810... is the root of the equation tan(2/sqrt(d)) = Pi*sqrt(d)/4 and c = 1.4057183994645... - Vaclav Kotesovec, Dec 21 2017

Extensions

Extended and signs tested Mar 15 1997 by Olivier Gérard.
Showing 1-2 of 2 results.