cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024314 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = (natural numbers >= 3), t = A023532.

Original entry on oeis.org

3, 9, 24, 37, 81, 133, 256, 413, 746, 1208, 2098, 3394, 5753, 9309, 15532, 25131, 41499, 67147, 110122, 178181, 290890, 470670, 766068, 1239524, 2013407, 3257761, 5284656, 8550753
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( x*(3+6*x+6*x^2-8*x^3-7*x^4+x^5-4*x^6+2*x^7)/((1-x-x^2)*(1-x^2-x^4)^2) )); // G. C. Greubel, Jan 17 2022
    
  • Mathematica
    a[n_]:= With[{F=Fibonacci}, 6*F[n+3] +F[n+1] - (1/2)*((1+(-1)^n)*(((n+2)/2 )*LucasL[(n+4)/2] + 5*F[(n+6)/2]) - (1-(-1)^n)*(((n+3)/2)*LucasL[(n+3)/2] +5*F[(n+5)/2] ))];
    Table[a[n], {n, 40}] (* G. C. Greubel, Jan 17 2022 *)
  • Sage
    def A024314_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(3+6*x+6*x^2-8*x^3-7*x^4+x^5-4*x^6+2*x^7)/((1-x-x^2)*(1-x^2-x^4)^2) ).list()
    a=A024314_list(41); a[1:] # G. C. Greubel, Jan 17 2022

Formula

G.f.: x*(3 + 6*x + 6*x^2 - 8*x^3 - 7*x^4 + x^5 - 4*x^6 + 2*x^7)/((1 - x - x^2)*(1 - x^2 - x^4)^2). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
From G. C. Greubel, Jan 17 2022: (Start)
a(2*n) = 6*F(2*n+3) + F(2*n+1) - (n+6)*F(n+3) - (n+1)*F(n+1).
a(2*n+1) = 6*F(2*n+2) + F(2*n) - (n+6)*F(n+2) - (n+1)*F(n), where F(n) = A000045(n). (End)