A024315 a(n) = s(1)t(n) + s(2)t(n-1) + ... + s(k)t(n-k+1), where k = floor(n/2), s = (natural numbers >= 3), t = (Fibonacci numbers).
3, 6, 17, 27, 59, 96, 185, 299, 540, 874, 1518, 2456, 4163, 6736, 11239, 18185, 30029, 48588, 79685, 128933, 210490, 340580, 554332, 896928, 1456915, 2357338, 3824013, 6187383
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,3,-2,-1,-1,-3,2,1,1,1).
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x*(3+3*x+2*x^2-2*x^3-4*x^4-x^5-2*x^6)/((1-x-x^2)*(1-x^2-x^4)^2) )); // G. C. Greubel, Jan 16 2022 -
Mathematica
a[n_]:= With[{F=Fibonacci}, If[EvenQ[n], LucasL[n+4] +F[n+3] -F[(n+10)/2] -((n+ 4)/2)*F[(n+6)/2], LucasL[n+4] +F[n+3] -F[(n+7)/2] -((n+7)/2)*F[(n+5)/2]]]; Table[a[n], {n, 40}] (* G. C. Greubel, Jan 16 2022 *)
-
Sage
def A024315_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x*(3+3*x+2*x^2-2*x^3-4*x^4-x^5-2*x^6)/((1-x-x^2)*(1-x^2-x^4)^2) ).list() a=A024315_list(41); a[1:] # G. C. Greubel, Jan 16 2022
Formula
G.f.: x*(3 +3*x +2*x^2 -2*x^3 -4*x^4 -x^5 -2*x^6)/((1-x-x^2)*(1-x^2-x^4)^2). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
From G. C. Greubel, Jan 16 2022: (Start)
a(2*n) = L(2*n+4) + F(2*n+3) - F(n+5) - (n+2)*F(n+3), n >= 1.