cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024315 a(n) = s(1)t(n) + s(2)t(n-1) + ... + s(k)t(n-k+1), where k = floor(n/2), s = (natural numbers >= 3), t = (Fibonacci numbers).

Original entry on oeis.org

3, 6, 17, 27, 59, 96, 185, 299, 540, 874, 1518, 2456, 4163, 6736, 11239, 18185, 30029, 48588, 79685, 128933, 210490, 340580, 554332, 896928, 1456915, 2357338, 3824013, 6187383
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( x*(3+3*x+2*x^2-2*x^3-4*x^4-x^5-2*x^6)/((1-x-x^2)*(1-x^2-x^4)^2) )); // G. C. Greubel, Jan 16 2022
    
  • Mathematica
    a[n_]:= With[{F=Fibonacci}, If[EvenQ[n], LucasL[n+4] +F[n+3] -F[(n+10)/2] -((n+ 4)/2)*F[(n+6)/2], LucasL[n+4] +F[n+3] -F[(n+7)/2] -((n+7)/2)*F[(n+5)/2]]];
    Table[a[n], {n, 40}] (* G. C. Greubel, Jan 16 2022 *)
  • Sage
    def A024315_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(3+3*x+2*x^2-2*x^3-4*x^4-x^5-2*x^6)/((1-x-x^2)*(1-x^2-x^4)^2) ).list()
    a=A024315_list(41); a[1:] # G. C. Greubel, Jan 16 2022

Formula

G.f.: x*(3 +3*x +2*x^2 -2*x^3 -4*x^4 -x^5 -2*x^6)/((1-x-x^2)*(1-x^2-x^4)^2). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
From G. C. Greubel, Jan 16 2022: (Start)
a(2*n) = L(2*n+4) + F(2*n+3) - F(n+5) - (n+2)*F(n+3), n >= 1.
a(2*n-1) = L(2*n+3) + F(2*n+2) - F(n+3) - (n+3)*F(n+2), n >= 1, where L(n) = A000032(n) and F(n) = A000045(n). (End)