cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024318 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023531, t = (Fibonacci numbers).

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 8, 13, 26, 42, 68, 110, 178, 288, 466, 754, 1254, 2029, 3283, 5312, 8595, 13907, 22502, 36409, 58911, 95320, 154608, 250161, 404769, 654930, 1059699, 1714629, 2774328, 4488957, 7263285
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    b:= func< n,j | IsIntegral((Sqrt(8*j+9) -3)/2) select Fibonacci(n-j+1) else 0 >;
    A024318:= func< n | (&+[b(n,j): j in [1..Floor((n+1)/2)]]) >;
    [A024318(n) : n in [1..80]]; // G. C. Greubel, Jan 19 2022
    
  • Mathematica
    Table[t=0; m=3; p=BitShiftRight[n]; n--; While[n>p, t += Fibonacci[n+1]; n -= m++]; t, {n, 120}] (* G. C. Greubel, Jan 19 2022 *)
  • Sage
    def b(n,j): return fibonacci(n-j+1) if ((sqrt(8*j+9) -3)/2).is_integer() else 0
    def A024318(n): return sum( b(n,j) for j in (1..floor((n+1)/2)) )
    [A024318(n) for n in (1..120)] # G. C. Greubel, Jan 19 2022

Formula

a(n) = Sum_{j=1..floor((n+1)/2)} A023531(j)*Fibonacci(n-j+1). - G. C. Greubel, Jan 19 2022