A024319 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023531, t = (Lucas numbers).
0, 0, 3, 4, 7, 11, 18, 29, 58, 94, 152, 246, 398, 644, 1042, 1686, 2804, 4537, 7341, 11878, 19219, 31097, 50316, 81413, 131729, 213142, 345714, 559377, 905091, 1464468, 2369559, 3834027, 6203586
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
A023531:= func< n | IsIntegral( (Sqrt(8*n+9) -3)/2 ) select 1 else 0 >; [ (&+[A023531(j)*Lucas(n-j+1): j in [1..Floor((n+1)/2)]]) : n in [1..40]]; // G. C. Greubel, Jan 19 2022
-
Mathematica
A023531[n_]:= SquaresR[1, 8n+9]/2; a[n_]:= Sum[A023531[j]*LucasL[n-j+1], {j, Floor[(n+1)/2]}]; Table[a[n], {n, 40}] (* G. C. Greubel, Jan 19 2022 *)
-
Sage
def A023531(n): if ((sqrt(8*n+9) -3)/2).is_integer(): return 1 else: return 0 [sum( A023531(j)*lucas_number2(n-j+1,1,-1) for j in (1..floor((n+1)/2)) ) for n in (1..40)] # G. C. Greubel, Jan 19 2022
Formula
a(n) = Sum_{j=1..floor((n+1)/2)} A023531(j)*Lucas(n-j+1). - G. C. Greubel, Jan 19 2022