A024321 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023531, t = (composite numbers).
0, 0, 6, 8, 9, 10, 12, 14, 25, 28, 32, 35, 37, 40, 44, 46, 64, 69, 73, 77, 81, 85, 89, 93, 96, 100, 128, 133, 139, 144, 148, 154, 162, 166, 170, 176, 181, 187, 223, 229, 236, 242, 248, 255, 262, 268, 275, 281, 287, 294, 301, 308, 354, 361, 370, 380, 386, 394, 401, 408, 418, 425
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
A002808:= [n : n in [2..100] | not IsPrime(n) ]; A023531:= func< n | IsIntegral( (Sqrt(8*n+9) -3)/2 ) select 1 else 0 >; [ (&+[A023531(j)*A002808[n-j+1]: j in [1..Floor((n+1)/2)]]) : n in [1..70]]; // G. C. Greubel, Jan 19 2022
-
Mathematica
A023531[n_]:= SquaresR[1, 8n+9]/2; Composite[n_]:= FixedPoint[n +PrimePi[#] +1 &, n]; a[n_]:= Sum[A023531[j]*Composite[n-j+1], {j, Floor[(n+1)/2]}]; Table[a[n], {n, 70}] (* G. C. Greubel, Jan 19 2022 *)
-
Sage
A002808 = [n for n in (1..250) if sloane.A001222(n) > 1] def A023531(n): if ((sqrt(8*n+9) -3)/2).is_integer(): return 1 else: return 0 [sum( A023531(j)*A002808[n-j] for j in (1..floor((n+1)/2)) ) for n in (1..70)] # G. C. Greubel, Jan 19 2022