cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024321 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023531, t = (composite numbers).

Original entry on oeis.org

0, 0, 6, 8, 9, 10, 12, 14, 25, 28, 32, 35, 37, 40, 44, 46, 64, 69, 73, 77, 81, 85, 89, 93, 96, 100, 128, 133, 139, 144, 148, 154, 162, 166, 170, 176, 181, 187, 223, 229, 236, 242, 248, 255, 262, 268, 275, 281, 287, 294, 301, 308, 354, 361, 370, 380, 386, 394, 401, 408, 418, 425
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A002808:= [n : n in [2..100] | not IsPrime(n) ];
    A023531:= func< n | IsIntegral( (Sqrt(8*n+9) -3)/2 ) select 1 else 0 >;
    [ (&+[A023531(j)*A002808[n-j+1]: j in [1..Floor((n+1)/2)]]) : n in [1..70]]; // G. C. Greubel, Jan 19 2022
    
  • Mathematica
    A023531[n_]:= SquaresR[1, 8n+9]/2;
    Composite[n_]:= FixedPoint[n +PrimePi[#] +1 &, n];
    a[n_]:= Sum[A023531[j]*Composite[n-j+1], {j, Floor[(n+1)/2]}];
    Table[a[n], {n, 70}] (* G. C. Greubel, Jan 19 2022 *)
  • Sage
    A002808 = [n for n in (1..250) if sloane.A001222(n) > 1]
    def A023531(n):
        if ((sqrt(8*n+9) -3)/2).is_integer(): return 1
        else: return 0
    [sum( A023531(j)*A002808[n-j] for j in (1..floor((n+1)/2)) ) for n in (1..70)] # G. C. Greubel, Jan 19 2022

Formula

a(n) = Sum_{j=1..floor((n+1)/2)} A023531(j)*A002808(n-j+1). - G. C. Greubel, Jan 19 2022