A024322 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023531, t = (F(2), F(3), ...).
0, 0, 2, 3, 5, 8, 13, 21, 42, 68, 110, 178, 288, 466, 754, 1220, 2029, 3283, 5312, 8595, 13907, 22502, 36409, 58911, 95320, 154231, 250161, 404769, 654930, 1059699, 1714629, 2774328, 4488957, 7263285
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
A023531:= func< n | IsIntegral( (Sqrt(8*n+9) - 3)/2 ) select 1 else 0 >; [ (&+[A023531(j)*Fibonacci(n-j+2): j in [1..Floor((n+1)/2)]]) : n in [1..40]]; // G. C. Greubel, Jan 20 2022
-
Mathematica
A010054[n_]:= SquaresR[1, 8n+1]/2; a[n_]:= Sum[A010054[j+1]*Fibonacci[n-j+2], {j, Floor[(n+1)/2]}]; Table[a[n], {n, 40}] (* G. C. Greubel, Jan 20 2022 *)
-
Sage
def A023531(n): if ((sqrt(8*n+9) -3)/2).is_integer(): return 1 else: return 0 [sum( A023531(j)*fibonacci(n-j+2) for j in (1..floor((n+1)/2)) ) for n in (1..40)] # G. C. Greubel, Jan 20 2022
Formula
From G. C. Greubel, Jan 20 2022: (Start)