A024323 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023531, t = (odd natural numbers).
0, 0, 3, 5, 7, 9, 11, 13, 24, 28, 32, 36, 40, 44, 48, 52, 73, 79, 85, 91, 97, 103, 109, 115, 121, 127, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 295, 305, 315, 325, 335, 345, 355, 365, 375, 385, 395, 405, 415, 425, 488, 500, 512, 524, 536, 548, 560, 572, 584
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
A023531:= func< n | IsIntegral( (Sqrt(8*n+9) - 3)/2 ) select 1 else 0 >; [ (&+[A023531(j)*(2*n-2*j+1): j in [1..Floor((n+1)/2)]]) : n in [1..70]]; // G. C. Greubel, Jan 20 2022
-
Mathematica
A023531[n_]:= SquaresR[1, 8n+9]/2; a[n_]:= Sum[A023531[j]*(2*n-2*j+1), {j, Floor[(n+1)/2]}]; Table[a[n], {n, 70}] (* G. C. Greubel, Jan 20 2022 *)
-
Sage
def A023531(n): if ((sqrt(8*n+9) -3)/2).is_integer(): return 1 else: return 0 [sum( A023531(j)*(2*n-2*j+1) for j in (1..floor((n+1)/2)) ) for n in (1..70)] # G. C. Greubel, Jan 20 2022
Formula
a(n) = Sum_{j=1..floor((n+1)/2)} A023531(j)*(2*n -2*j + 1). - G. C. Greubel, Jan 20 2022