cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024363 Number of primitive Pythagorean triangles with side n.

Original entry on oeis.org

0, 0, 1, 1, 2, 0, 1, 1, 1, 0, 1, 2, 2, 0, 2, 1, 2, 0, 1, 2, 2, 0, 1, 2, 2, 0, 1, 2, 2, 0, 1, 1, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 1, 2, 2, 0, 1, 2, 1, 0, 2, 2, 2, 0, 2, 2, 2, 0, 1, 4, 2, 0, 2, 1, 4, 0, 1, 2, 2, 0, 1, 2, 2, 0, 2, 2, 2, 0, 1, 2, 1, 0, 1, 4, 4, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2
Offset: 1

Views

Author

Keywords

Comments

Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives number of times AUBUC takes value n.
Using Euclidean parameters (x, y) with x > y to generate primitive Pythagorean triples to capture all occurrences of side n, the Mma program below must allow the x parameter to iterate at least (n+1)/2 times. - Frank M Jackson, Jun 12 2017

Crossrefs

Programs

  • Mathematica
    lst={}; xmax=51; Do[If[GCD[x, y]==1&&OddQ[x+y], AppendTo[lst, Sort@{x^2-y^2, 2 x*y, x^2+y^2}]], {x, xmax}, {y, x}]; BinCounts[Select[Flatten@lst, #<2xmax &], {1, 2(xmax-1), 1}] (* or *)
    a[n_] := Block[{x, y, s = List@ ToRules@ Reduce[(x^2-y^2 == n^2 || x^2 + y^2 == n^2) && x>y>0, {x, y}, Integers]}, If[s == {}, 0, Length@ Select[ {x, y} /. s, GCD @@ # == 1 &]]]; Array[a, 99] (* Giovanni Resta, Jun 19 2017 *)

Formula

a(n)=0 for n=1 and n=2 (mod 4)=A016825. a(n)=A024361(n)+A024362(n). - Lekraj Beedassy, Dec 01 2003