cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024406 Ordered areas of primitive Pythagorean triangles.

Original entry on oeis.org

6, 30, 60, 84, 180, 210, 210, 330, 504, 546, 630, 840, 924, 990, 1224, 1320, 1386, 1560, 1710, 1716, 2310, 2340, 2574, 2730, 2730, 3036, 3570, 3900, 4080, 4290, 4620, 4914, 5016, 5610, 5814, 6090, 6630, 7140, 7440, 7854, 7956, 7980, 7980, 8970, 8976, 9690
Offset: 1

Views

Author

Keywords

Comments

This sequence also gives Fibonacci's congruous numbers (or congrua) divided by 4 with multiplicities, not regarding leg exchange in the underlying primitive Pythagorean triangle. See A258150 and the example. - Wolfdieter Lang, Jun 14 2015
The squarefree part of an entry which is not squarefree is a primitive congruent number from A006991 belonging to a Pythagorean triangle with rational (not all integer) side lengths (and its companion obtained by exchanging the legs). See the W. Lang link. - Wolfdieter Lang, Oct 25 2016

Examples

			a(6) = a(7) = 210 corresponds to the area (in some squared length unit) of the primitive Pythagorean triangles (21, 20, 29) and (35, 12, 37). Fibonacci's congruum C = 840 = 210*4 belongs to the two triples [x, y, z] = [29, 41, 1] and [37, 47, 23], solving x^2 + C = y^2 and x^2 - C = z^2. - _Wolfdieter Lang_, Jun 14 2015
a(5) = 180 = 6^2*5 lead to the primitive congruent number A006991(1) = 5 from the primitive Pythagorean triangle [9, 40, 41] after division by 6: [3/2, 20/3, 41/6]. See the link for the other nonsquarefree a(n) numbers. - _Wolfdieter Lang_, Oct 25 2016
		

Crossrefs

Formula

a(n) = 6*A020885(n). - Lekraj Beedassy, Apr 30 2004
a(n) = A121728(n)*A121729(n)/2. - M. F. Hasler, Apr 16 2020