A024447 Sum of the products of the primes taken 2 at a time from the first n primes.
0, 6, 31, 101, 288, 652, 1349, 2451, 4222, 7122, 11121, 17041, 25118, 35352, 48559, 65943, 88422, 115262, 148829, 189157, 235804, 292052, 357705, 435491, 528902, 635962, 755545, 890793, 1040232, 1207472, 1409783, 1635103, 1888690, 2165022, 2481945
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
Primes:= [seq](ithprime(i),i=1..100): (map(`^`,ListTools:-PartialSums(Primes),2) - ListTools:-PartialSums(map(`^`,Primes,2)))/2; # Robert Israel, Sep 24 2015
-
Mathematica
a[1] = 0; a[n_] := a[n] = a[n-1] + Prime[n]*Total[Prime[Range[n-1]]]; Array[a, 35] (* Jean-François Alcover, Feb 28 2019 *)
-
PARI
/* Extra memory allocation could be required. */ Primes=List(); forprime(x=2,prime(500000),listput(Primes,x)); /* Keep previous lines global, before a(n) */ a(n)={my(p=vector(n,j,Primes[j]),s=0);forvec(y=vector(2,i,[1,#p]),s+=(p[y[1]]*p[y[2]]),2);s} \\ R. J. Cano, Oct 11 2015
Formula
a(1) = 0, a(n+1) = prime(n+1)*(sum of first n primes) + a(n), for n > 1.
a(n) ~ (3*n^4*log^2(n) - 4*n^3*log^2(n))/24. - Timothy Varghese, May 06 2014
Comments