A024450
Sum of squares of the first n primes.
Original entry on oeis.org
4, 13, 38, 87, 208, 377, 666, 1027, 1556, 2397, 3358, 4727, 6408, 8257, 10466, 13275, 16756, 20477, 24966, 30007, 35336, 41577, 48466, 56387, 65796, 75997, 86606, 98055, 109936, 122705, 138834, 155995, 174764, 194085, 216286, 239087, 263736, 290305, 318194
Offset: 1
Cf.
A007504 (sum of the first n primes).
-
a024450 n = a024450_list !! (n-1)
a024450_list = scanl1 (+) a001248_list
-- Reinhard Zumkeller, Jun 08 2015
-
[&+[NthPrime(k)^2: k in [1..n]]: n in [1..40]]; // Vincenzo Librandi, Oct 11 2018
-
[n le 1 select 4 else Self(n-1) + NthPrime(n)^2: n in [1..80]]; // G. C. Greubel, Jan 30 2025
-
A024450:=n->add(ithprime(i)^2, i=1..n); seq(A024450(n), n=1..100); # Wesley Ivan Hurt, Nov 09 2013
-
Table[ Sum[ Prime[k]^2, {k, 1, n} ], {n, 40} ]
Accumulate[Prime[Range[40]]^2] (* Harvey P. Dale, Apr 16 2013 *)
-
s=0;forprime(p=2,1e3,print1(s+=p^2", ")) \\ Charles R Greathouse IV, Jul 15 2011
-
a(n) = norml2(primes(n)); \\ Michel Marcus, Nov 26 2020
-
from sympy import prime, primerange
def a(n): return sum(p*p for p in primerange(1, prime(n)+1))
print([a(n) for n in range(1, 40)]) # Michael S. Branicky, Apr 13 2021
A339194
Sum of all squarefree semiprimes with greater prime factor prime(n).
Original entry on oeis.org
0, 6, 25, 70, 187, 364, 697, 1102, 1771, 2900, 3999, 5920, 8077, 10234, 13207, 17384, 22479, 26840, 33567, 40328, 46647, 56248, 65653, 77786, 93411, 107060, 119583, 135248, 149439, 167240, 202311, 225320, 253587, 276332, 316923, 343676, 381039, 421192, 458749
Offset: 1
The triangle A339116 with row sums equal to this sequence begins (n > 1):
6 = 6
25 = 10 + 15
70 = 14 + 21 + 35
187 = 22 + 33 + 55 + 77
A025129 gives sums of squarefree semiprimes by weight, row sums of
A338905.
A143215 is the not necessarily squarefree version, row sums of
A087112.
A339116 is a triangle of squarefree semiprimes with these row sums.
A024697 is the sum of semiprimes of weight n.
A168472 gives partial sums of squarefree semiprimes.
A332765 gives the greatest squarefree semiprime of weight n.
A338904 groups semiprimes by weight.
-
Table[Sum[Prime[i]*Prime[j],{j,i-1}],{i,10}]
-
a(n) = prime(n)*vecsum(primes(n-1)); \\ Michel Marcus, Jun 15 2024
A238146
Triangle read by rows: T(n,k) is coefficient of x^(n-k) in consecutive prime rooted polynomial of degree n, P(x) = Product_{k=1..n} (x-p(k)) = 1*x^n + T(n,1)*x^(n-1)+ ... + T(n,k-1)*x + T(n,k), for 1 <= k <= n.
Original entry on oeis.org
-2, -5, 6, -10, 31, -30, -17, 101, -247, 210, -28, 288, -1358, 2927, -2310, -41, 652, -5102, 20581, -40361, 30030, -58, 1349, -16186, 107315, -390238, 716167, -510510, -77, 2451, -41817, 414849, -2429223, 8130689, -14117683, 9699690
Offset: 1
Triangle begins:
================================================
\k | 1 2 3 4 5 6 7
n\ |
================================================
1 | -2;
2 | -5, 6;
3 | -10, 31, -30;
4 | -17, 101, -247, 210;
5 | -28, 288, -1358, 2927, -2310;
6 | -41, 652, -5102, 20581, -40361, 30030;
7 | -58,1349,-16186,107315,-390238,716167,-510510;
So equation x^7 -58*x^6 + 1349*x^5 -16186*x^4 + 107315*x^3 -390238*x^2+ 716167*x -510510 = 0 has 7 consecutive prime roots: 2,3,5,7,11,13,17
A006939 is the determinant of triangle matrix, considering T(n,k) k>n = 0;
-
T:= n-> (p-> seq(coeff(p, x, n-i), i=1..n))(mul(x-ithprime(i), i=1..n)):
seq(T(n), n=1..10); # Alois P. Heinz, Aug 18 2019
-
a = 1
For [i = 1, i < 10, i++,
a *= (x - Prime[i]);
Print[Drop[Reverse[CoefficientList[Expand[a], x]], 1]]
]
A260613
Triangle read by rows: T(n, k) = coefficient of x^(n-k) in Product_{m=1..n} (x+prime(m)); 0 <= k <= n, n >= 0.
Original entry on oeis.org
1, 1, 2, 1, 5, 6, 1, 10, 31, 30, 1, 17, 101, 247, 210, 1, 28, 288, 1358, 2927, 2310, 1, 41, 652, 5102, 20581, 40361, 30030, 1, 58, 1349, 16186, 107315, 390238, 716167, 510510, 1, 77, 2451, 41817, 414849, 2429223, 8130689, 14117683, 9699690
Offset: 0
The triangle starts:
Row 0: 1;
Row 1: 1, 2; Coefficients of x + 2.
Row 2: 1, 5, 6; Coefficients of (x+2)(x+3) = x^2 + 5x + 6.
Row 3: 1, 10, 31, 30; Coeff's of (x+2)(x+3)(x+5) = x^3 + 10x^2 + 31x + 30.
Row 5: 1, 17, 101, 247, 210;
Row 6: 1, 28, 288, 1358, 2927, 2310;
...
-
T:= n-> (p-> seq(coeff(p, x, n-i), i=0..n))(mul(x+ithprime(i), i=1..n)):
seq(T(n), n=0..10); # Alois P. Heinz, Aug 18 2019
-
row[n_] := CoefficientList[Product[x + Prime[m], {m, 1, n}] + O[x]^(n+1), x] // Reverse;
row /@ Range[0, 8] // Flatten (* Jean-François Alcover, Sep 16 2019 *)
-
tabl(nn) = {for (n=0, nn, polp = prod(k=1, n, x+prime(k)); forstep (k= n, 0, -1, print1(polcoeff(polp, k), ", ");); print(););} \\ Michel Marcus, Aug 10 2015
A309802
a(n) is the coefficient of x^n in the polynomial Product_{i=1..n+2} (prime(i)*x-1).
Original entry on oeis.org
1, 10, 101, 1358, 20581, 390238, 8130689, 201123530, 6166988769, 201097530280, 7754625545261, 329758834067168, 14671637258193181, 711027519310719868, 38706187989054920001, 2338431642812927422310, 145908145906128304198449, 9976861293427674211625032
Offset: 0
Cf.
A000040,
A002110,
A024451,
A070918,
A309803,
A309804,
A033999,
A007504,
A024447,
A024448,
A024449,
A054640,
A005867,
A238146,
A260613.
-
a:= n-> coeff(mul(ithprime(i)*x-1, i=1..n+2), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 18 2019
A309803
a(n) is the coefficient of x^n in the polynomial Product_{i=1..n+3} (prime(i)*x-1).
Original entry on oeis.org
-1, -17, -288, -5102, -107315, -2429223, -64002818, -2057205252, -69940351581, -2788890538777, -122099137635118, -5580021752377242, -276932659619923555, -15388458479166668283, -946625238259888348698, -60082571176666116692888, -4171440414742758122621945
Offset: 0
Cf.
A000040,
A002110,
A024451,
A070918,
A309802,
A309804,
A033999,
A007504,
A024447,
A024448,
A024449,
A054640,
A005867,
A238146,
A260613.
-
a:= n-> coeff(mul(ithprime(i)*x-1, i=1..n+3), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 19 2019
A357251
a(n) = Sum_{1<=i<=j<=n} prime(i)*prime(j).
Original entry on oeis.org
4, 19, 69, 188, 496, 1029, 2015, 3478, 5778, 9519, 14479, 21768, 31526, 43609, 59025, 79218, 105178, 135739, 173795, 219164, 271140, 333629, 406171, 491878, 594698, 711959, 842151, 988848, 1150168, 1330177, 1548617, 1791098, 2063454, 2359107, 2698231, 3064708, 3470396, 3918157, 4404795, 4938846
Offset: 1
a(3) = 2*2 + 2*3 + 2*5 + 3*3 + 3*5 + 5*5 = 69.
-
P:= [seq(ithprime(i),i=1..100)]:
S:= ListTools:-PartialSums(P):
ListTools:-PartialSums(zip(`*`,P,S));
-
Accumulate[(p = Prime[Range[40]]) * Accumulate[p]] (* Amiram Eldar, Sep 20 2022 *)
-
from itertools import accumulate
from sympy import prime, primerange
def aupton(nn):
p = list(primerange(2, prime(nn)+1))
return list(accumulate(c*d for c, d in zip(p, accumulate(p))))
print(aupton(40)) # Michael S. Branicky, Sep 24 2022 after Amiram Eldar
A309804
a(n) is the coefficient of x^n in the polynomial Product_{i=1..n+4} (prime(i)*x-1).
Original entry on oeis.org
1, 28, 652, 16186, 414849, 11970750, 411154568, 14802996860, 617651235401, 28112591190218, 1330940558814492, 68134228016658366, 3888046744502816953, 244783216404832868510, 15878401438954693327808, 1123935467586630569656024, 83970858613393528568199649
Offset: 0
Cf.
A000040,
A002110,
A024451,
A070918,
A309802,
A309803,
A033999,
A007504,
A024447,
A024448,
A024449,
A054640,
A005867,
A238146,
A260613.
-
a:= n-> coeff(mul(ithprime(i)*x-1, i=1..n+4), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 19 2019
-
a[n_] := CoefficientList[Series[Product[Prime[i]*x - 1, {i, 1, n+4}], {x, 0, 25}], x] [[n+1]]; Array[a, 17, 0] (* Amiram Eldar, Aug 24 2019 *)
-
a(n) = polcoef(prod(i=1, n+4, prime(i)*x-1), n); \\ Michel Marcus, Aug 25 2019
A024452
a(n) = [ (2nd elementary symmetric function of P(n))/(first elementary symmetric function of P(n)) ], where P(n) = {first n+1 primes}.
Original entry on oeis.org
1, 3, 5, 10, 15, 23, 31, 42, 55, 69, 86, 105, 125, 148, 173, 200, 230, 262, 296, 331, 369, 409, 452, 498, 547, 597, 649, 702, 757, 819, 883, 950, 1017, 1090, 1164, 1240, 1320, 1402, 1487, 1574, 1663, 1757, 1851, 1948
Offset: 1
Showing 1-9 of 9 results.
Comments