Original entry on oeis.org
19, 14479, 43609, 406171, 711959, 1330177, 2698231, 3918157, 18987169, 26135339, 194727347, 269998639, 975929347, 5005853669, 8430389621, 24830247671, 36372313009, 69703708967, 93194681917, 126628534313, 139478926201, 304123612349, 359101509211, 384305009171, 387550106843, 400722388999
Offset: 1
a(2) = 14479 is in the sequence because 14479 = A357251(11) is the sum of p*q for primes p <= q <= 31 and is prime.
A343751
A(n,k) is the sum of all compositions [c_1, c_2, ..., c_k] of n into k nonnegative parts encoded as Product_{i=1..k} prime(i)^(c_i); square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 5, 4, 0, 1, 10, 19, 8, 0, 1, 17, 69, 65, 16, 0, 1, 28, 188, 410, 211, 32, 0, 1, 41, 496, 1726, 2261, 665, 64, 0, 1, 58, 1029, 7182, 14343, 11970, 2059, 128, 0, 1, 77, 2015, 20559, 93345, 112371, 61909, 6305, 256, 0, 1, 100, 3478, 54814, 360612, 1139166, 848506, 315850, 19171, 512, 0
Offset: 0
A(1,3) = 10 = 5 + 3 + 2, sum of encoded compositions [0,0,1], [0,1,0], [1,0,0].
A(4,2) = 211 = 81 + 54 + 36 + 24 + 16, sum of encoded compositions [0,4], [1,3], [2,2], [3,1], [4,0].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 5, 10, 17, 28, 41, ...
0, 4, 19, 69, 188, 496, 1029, ...
0, 8, 65, 410, 1726, 7182, 20559, ...
0, 16, 211, 2261, 14343, 93345, 360612, ...
0, 32, 665, 11970, 112371, 1139166, 5827122, ...
0, 64, 2059, 61909, 848506, 13379332, 89131918, ...
-
A:= proc(n, k) option remember; `if`(n=0, 1,
`if`(k=0, 0, add(ithprime(k)^i*A(n-i, k-1), i=0..n)))
end:
seq(seq(A(n, d-n), n=0..d), d=0..10);
# second Maple program:
A:= proc(n, k) option remember; `if`(n=0, 1,
`if`(k=0, 0, ithprime(k)*A(n-1, k)+A(n, k-1)))
end:
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
A[n_, k_] := A[n, k] = If[n == 0, 1,
If[k == 0, 0, Prime[k] A[n-1, k] + A[n, k-1]]];
Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Nov 06 2021, after 2nd Maple program *)
Showing 1-2 of 2 results.
Comments