cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A024573 a(n) = floor(1/frac(n*e)).

Original entry on oeis.org

1, 2, 6, 1, 1, 3, 35, 1, 2, 5, 1, 1, 2, 17, 1, 2, 4, 1, 1, 2, 11, 1, 1, 4, 1, 1, 2, 8, 1, 1, 3, 1, 1, 2, 7, 1, 1, 3, 76, 1, 2, 5, 1, 1, 3, 24, 1, 2, 5, 1, 1, 2, 14, 1, 1, 4, 1, 1, 2, 10, 1, 1, 3, 1, 1, 2, 8, 1, 1, 3, 1, 1, 2, 6, 1, 1, 3, 38, 1, 2, 5, 1, 1, 2, 18, 1, 2, 4, 1, 1, 2, 12, 1, 1, 4, 1, 1, 2, 9, 1
Offset: 1

Views

Author

Keywords

Comments

From Hieronymus Fischer, Apr 15 2012: (Start)
The sequence is well defined, since frac(n*e)>0 for n>0.
Let b(n,m) = |{a(k)| 1<=k<=n, a(k)>=m}| be the number of the first n terms which are >= m >= 1. Then, lim b(n,m)/n = 1/m for n-->oo since frac(n*e) is uniformly distributed. (End)

Crossrefs

Programs

  • Maple
    seq(floor(1/frac(n*exp(1))), n=1..30); # Ridouane Oudra, Jun 09 2025
  • Mathematica
    f[n_] := Floor[1/FractionalPart[n*E]]; Array[f, 100] (* Robert G. Wilson v, Apr 17 2012 *)

Formula

From Ridouane Oudra, Jun 09 2025: (Start)
a(n!) = n.
a(n) = 1 if n is in A190860.
a(n) > 1 if n is in A190847. (End)

A024585 a(n) = Sum_{k=1..n} [ 1/{k*Pi} ], where {x} := x - [ x ].

Original entry on oeis.org

7, 10, 12, 13, 14, 15, 16, 23, 26, 28, 29, 30, 31, 32, 40, 43, 45, 46, 47, 48, 49, 57, 60, 62, 63, 64, 65, 66, 75, 79, 81, 82, 83, 84, 85, 95, 99, 101, 102, 103, 104, 105, 116, 120, 122, 123, 124, 125, 126, 138, 142, 144, 145, 146, 147, 148, 162, 166, 168, 170, 171, 172, 173, 189
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A024586. Partial sums of A024584.

Programs

  • Mathematica
    Table[Sum[Floor[1/FractionalPart[k*Pi]], {k, n}], {n, 100}] (* Clark Kimberling, Aug 18 2012 *)
  • PARI
    a(n) = sum(k=1, n, floor(1/frac((k*Pi)))); \\ Michel Marcus, Jul 17 2019

A024583 a(n) = floor(n/{n*Pi}), where { } = fractional part.

Original entry on oeis.org

7, 7, 7, 7, 7, 7, 7, 60, 32, 24, 19, 17, 15, 14, 121, 60, 41, 32, 27, 24, 21, 191, 89, 60, 46, 38, 32, 29, 273, 121, 79, 60, 49, 41, 36, 369, 154, 99, 74, 60, 50, 44, 485, 191, 121, 89, 71, 60, 52, 627, 230, 143, 105, 83, 69, 60, 805, 273, 166, 121, 95, 79, 68, 1033, 319, 191, 137, 108
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A024584.

Programs

  • Mathematica
    Table[Floor[n/FractionalPart[n*Pi]], {n, 70}] (* Clark Kimberling, Aug 18 2012 *)
Showing 1-3 of 3 results.