cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024687 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A000201 (lower Wythoff sequence), t = A023533.

Original entry on oeis.org

1, 0, 0, 1, 3, 4, 6, 0, 0, 1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 26, 30, 33, 36, 40, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, 30, 32, 33, 36, 40, 42, 46, 50, 52, 56, 58, 62, 66, 68, 72, 76, 78, 24, 25, 27, 29, 30, 32, 33, 35, 37, 38, 40
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
    [(&+[Floor(k*(1+Sqrt(5))/2)*A023533(n+1-k): k in [1..Floor((n+1)/2)]]): n in [1..100]]; // G. C. Greubel, Aug 01 2022
    
  • Mathematica
    A023533[n_]:= A023533[n]= If[Binomial[Floor[Surd[6*n-1,3]] +2, 3]!= n, 0,1];
    A024687[n_]:= A024687[n]= Sum[Floor[j*GoldenRatio]*A023533[n-j+1], {j, Floor[(n+ 1)/2]}];
    Table[A024687[n], {n, 100}] (* G. C. Greubel, Aug 01 2022 *)
  • SageMath
    @CachedFunction
    def A023533(n): return 0 if (binomial(floor((6*n-1)^(1/3)) +2, 3)!= n) else 1
    def A024687(n): return sum(floor(j*golden_ratio)*A023533(n-j+1) for j in (1..((n+1)//2)))
    [A024687(n) for n in (1..100)] # G. C. Greubel, Aug 01 2022

Formula

a(n) = Sum_{k=1..floor((n+1)/2)} A000201(k) * A023533(n-k+1).