A024693 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023533, t = A014306.
0, 1, 1, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 2, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 3, 4, 4, 3, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 4, 5, 5, 4
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Magma
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >; [(&+[A023533(k)*(1-A023533(n+1-k)): k in [1..Floor((n+1)/2)]]): n in [1..100]]; // G. C. Greubel, Jul 15 2022
-
Mathematica
A023533[n_]:= If[Binomial[Floor[Surd[6*n-1, 3]] +2, 3] != n, 0, 1]; A024693[n_]:= A024693[n]= Sum[(1-A023533[n-k+2])*A023533[k], {k,Floor[(n+1)/2]}]; Table[A024693[n], {n,0,100}] (* G. C. Greubel, Jul 15 2022 *)
-
SageMath
def A023533(n): if binomial( floor( (6*n-1)^(1/3) ) +2, 3) != n: return 0 else: return 1 [sum(A023533(k)*(1-A023533(n-k+1)) for k in (1..((n+1)//2))) for n in (1..100)] # G. C. Greubel, Jul 15 2022