A024783 Every suffix prime and no 0 digits in base 8 (written in base 8).
2, 3, 5, 7, 13, 15, 23, 27, 35, 37, 45, 53, 57, 65, 73, 75, 123, 145, 153, 213, 227, 235, 265, 323, 337, 345, 357, 373, 415, 445, 475, 513, 535, 557, 565, 573, 615, 645, 657, 673, 715, 723, 737, 753, 775, 1145, 1153, 1357, 1475, 1737, 1775, 2213, 2235, 2535, 3123, 3145
Offset: 1
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..446 (full sequence)
Programs
-
Maple
a:=[[2],[3],[5],[7]]: l1:=1: l2:=4: do for k from 1 to 7 do for j from l1 to l2 do d:=[op(a[j]),k]: if(isprime(op(convert(d, base, 8, 8^nops(d)))))then a:=[op(a), d]: fi: od: od: l1:=l2+1: l2:=nops(a): if(l1>l2)then break: fi: od: seq(op(convert(a[j], base, 10, 10^nops(a[j]))), j=1..nops(a)); # Nathaniel Johnston, Jun 21 2011
-
Python
from sympy import isprime def afull(): prime_strings, alst = list("2357"), [] while len(prime_strings) > 0: alst.extend(sorted(int(p) for p in prime_strings)) candidates = set(d+p for p in prime_strings for d in "1234567") prime_strings = [c for c in candidates if isprime(int(c, 8))] return alst print(afull()) # Michael S. Branicky, Apr 27 2022
Comments