A024831 a(n) = least m such that if r and s in {F(h)/F(2*h): h = 1,2,...,n} satisfy r < s, then r < k/m < s for some integer k, where F = A000045 (Fibonacci numbers).
2, 7, 10, 10, 15, 23, 37, 59, 95, 153, 247, 399, 645, 1043, 1687, 2729, 4415, 7143, 11557, 18699, 30255, 48953, 79207, 128159, 207365, 335523, 542887, 878409, 1421295, 2299703, 3720997, 6020699, 9741695, 15762393, 25504087, 41266479, 66770565, 108037043, 174807607, 282844649
Offset: 2
Keywords
Links
- W. Kuszmaul, Fast Algorithms for Finding Pattern Avoiders and Counting Pattern Occurrences in Permutations, arXiv preprint arXiv:1509.08216 [cs.DM], 2015-2017.
Programs
-
Mathematica
leastSeparator[seq_] := Module[{n = 1}, Table[While[Or @@ (Ceiling[n #1[[1]]] < 2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@ Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]]; t = Table[N[Fibonacci[h]/Fibonacci[2 h]], {h, 1, 30}] t1 = leastSeparator[t] (* Peter J. C. Moses, Aug 01 2012 *)
Formula
From Philippe Deléham, Feb 06 2024: (Start)
a(n) = a(n-1) + a(n-2) - 1 for n >= 8.
a(n) = 2*a(n-1) - a(n-3) for n >= 9.
a(n) = 1 + A022112(n-3) for n >= 6.
a(n) = floor(((1 + sqrt(5))/2)*a(n-1)) for n >= 8.
G.f.: x^2*(x^6+3*x^5+2*x^4-8*x^3-4*x^2+3*x+2)/((x-1)*(x^2+x-1)).
(End)
Extensions
All the terms were corrected by Clark Kimberling, Aug 07 2012
More terms from Sean A. Irvine, Jul 25 2019
Comments