cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024831 a(n) = least m such that if r and s in {F(h)/F(2*h): h = 1,2,...,n} satisfy r < s, then r < k/m < s for some integer k, where F = A000045 (Fibonacci numbers).

Original entry on oeis.org

2, 7, 10, 10, 15, 23, 37, 59, 95, 153, 247, 399, 645, 1043, 1687, 2729, 4415, 7143, 11557, 18699, 30255, 48953, 79207, 128159, 207365, 335523, 542887, 878409, 1421295, 2299703, 3720997, 6020699, 9741695, 15762393, 25504087, 41266479, 66770565, 108037043, 174807607, 282844649
Offset: 2

Views

Author

Keywords

Comments

Note that F(2*h)/F(h) = Lucas(h) for h > 0. - Editors.
For a guide to related sequences, see A001000. - Clark Kimberling, Aug 07 2012

Crossrefs

Programs

  • Mathematica
    leastSeparator[seq_] := Module[{n = 1},
    Table[While[Or @@ (Ceiling[n #1[[1]]] <
    2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
    Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
    t = Table[N[Fibonacci[h]/Fibonacci[2 h]], {h, 1, 30}]
    t1 = leastSeparator[t]
    (* Peter J. C. Moses, Aug 01 2012 *)

Formula

From Philippe Deléham, Feb 06 2024: (Start)
a(n) = a(n-1) + a(n-2) - 1 for n >= 8.
a(n) = 2*a(n-1) - a(n-3) for n >= 9.
a(n) = 1 + A022112(n-3) for n >= 6.
a(n) = floor(((1 + sqrt(5))/2)*a(n-1)) for n >= 8.
G.f.: x^2*(x^6+3*x^5+2*x^4-8*x^3-4*x^2+3*x+2)/((x-1)*(x^2+x-1)).
(End)

Extensions

All the terms were corrected by Clark Kimberling, Aug 07 2012
More terms from Sean A. Irvine, Jul 25 2019