A024841 a(n) = least m such that if r and s in {1/1, 1/3, 1/5, ..., 1/(2n-1)} satisfy r < s, then r < k/m < (k+2)/m < s for some integer k.
5, 19, 41, 71, 109, 155, 222, 287, 376, 460, 571, 673, 806, 926, 1081, 1219, 1396, 1552, 1751, 1926, 2147, 2380, 2584, 2839, 3106, 3338, 3627, 3928, 4188, 4511, 4846, 5134, 5491, 5860, 6176, 6567, 6970, 7385, 7740, 8177, 8626, 9087, 9481, 9964, 10459, 10966, 11398
Offset: 2
Keywords
Links
- Clark Kimberling, Table of n, a(n) for n = 2..100
Programs
-
Mathematica
leastSeparatorS[seq_, s_] := Module[{n = 1}, Table[While[Or @@ (Ceiling[n #1[[1]]] < s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@ Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]]; t = Map[leastSeparatorS[1/(2*Range[50]-1), #] &, Range[5]]; t[[3]] (* A024841 *) (* Peter J. C. Moses, Aug 06 2012 *)
Comments