A024889 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n-k+1), where k = floor(n/2), s = A023531, t = A023533.
0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0
Offset: 2
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 2..5000
Programs
-
Magma
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >; A023531:= func< n | IsSquare(8*n+9) select 1 else 0 >; A024889:= func< n | (&+[A023531(k)*A023533(n+1-k): k in [1..Floor(n/2)]]) >; [A024889(n): n in [2..130]]; // G. C. Greubel, Aug 02 2022
-
Mathematica
A023533[n_]:= A023533[n]= If[Binomial[Floor[Surd[6*n-1,3]]+2,3]!= n,0,1]; A023531[n_]:= If[IntegerQ[(Sqrt[8*n+9] -3)/2],1,0]; A024889[n_]:= A024889[n]= Sum[A023531[j]*A023533[n-j+1], {j, Floor[n/2]}]; Table[A024889[n], {n, 2, 130}] (* G. C. Greubel, Aug 02 2022 *)
-
SageMath
@CachedFunction def A023533(n): return 0 if (binomial(floor((6*n-1)^(1/3)) +2, 3) != n) else 1 def A023531(n): return 1 if is_square(8*n+9) else 0 def A024889(n): return sum(A023531(k)*A023533(n-k+1) for k in (1..(n//2))) [A024889(n) for n in (2..130)] # G. C. Greubel, Aug 02 2022