A024981 Numbers that are the sum of 3 positive cubes, including repetitions.
3, 10, 17, 24, 29, 36, 43, 55, 62, 66, 73, 80, 81, 92, 99, 118, 127, 129, 134, 136, 141, 153, 155, 160, 179, 190, 192, 197, 216, 218, 225, 232, 244, 251, 251, 253, 258, 270, 277, 281, 288, 307, 314, 342, 344, 345, 349, 352, 359, 368, 371, 375, 378, 397, 405, 408, 415, 433
Offset: 1
Examples
An example of repetition: 251 shows twice, because 251 = 1^3+5^3+5^3 = 2^3+3^3+6^3. [_Jean-François Alcover_, Jul 31 2013]
References
- H. Davenport, Sums of three positive cubes, J. London Math. Soc., 25 (1950), 339-343. Coll. Works III p. 999.
Links
Programs
-
Mathematica
m = 8; Sort[Select[Flatten[Table[x^3 + y^3 + z^3, {x, 1, m}, {y, x, m}, {z, y, m}]], # <= m^3 + 2 &]] (* T. D. Noe, Jul 30 2013 *) max = 500; pr = Table[ PowersRepresentations[n, 3, 3], {n, 1, max}] // Flatten[#, 1]& // Select[#, Times @@ # != 0 &]&; Total[#^3] & /@ pr (* Jean-François Alcover, Jul 31 2013 - replaced my previous incorrect code *)
Extensions
Corrected by David W. Wilson, May 15 1997
Inserted a second 251 from T. D. Noe, Jul 30 2013