cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024994 Number of periodic partitions of n: each part occurs more than once and the same number of times.

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 1, 4, 3, 5, 1, 10, 1, 7, 6, 10, 1, 16, 1, 17, 8, 14, 1, 31, 4, 20, 11, 31, 1, 48, 1, 42, 15, 40, 9, 79, 1, 56, 21, 87, 1, 111, 1, 105, 41, 106, 1, 185, 6, 157, 41, 187, 1, 254, 16, 259, 57, 258, 1, 425, 1, 342, 92, 432, 22, 557, 1, 554, 107, 627, 1, 875, 1, 762, 175, 922, 18, 1173
Offset: 1

Views

Author

Keywords

Examples

			E.g. 6 = 1+1+1+1+1+1 = 2+2+2 = 3+3 = 2+1+2+1, so a(6)=4.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(
         `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    a:= n-> add(b(d), d=divisors(n) minus {n}):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jul 11 2016
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Sum[Sum[If[OddQ[d], d, 0], {d, Divisors[j]}]* b[n-j], {j, 1, n}]/n]; a[n_] := Sum[b[d], {d, Divisors[n] ~Complement~ {n}}]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 25 2017, after Alois P. Heinz *)

Formula

a(n) = Sum(q(k)), where k divides n, k < n, where q(n) = A000009(n), distinct partitions. - Alford Arnold

Extensions

a(1) set to 0 by Alois P. Heinz, Jul 11 2016