A024994 Number of periodic partitions of n: each part occurs more than once and the same number of times.
0, 1, 1, 2, 1, 4, 1, 4, 3, 5, 1, 10, 1, 7, 6, 10, 1, 16, 1, 17, 8, 14, 1, 31, 4, 20, 11, 31, 1, 48, 1, 42, 15, 40, 9, 79, 1, 56, 21, 87, 1, 111, 1, 105, 41, 106, 1, 185, 6, 157, 41, 187, 1, 254, 16, 259, 57, 258, 1, 425, 1, 342, 92, 432, 22, 557, 1, 554, 107, 627, 1, 875, 1, 762, 175, 922, 18, 1173
Offset: 1
Keywords
Examples
E.g. 6 = 1+1+1+1+1+1 = 2+2+2 = 3+3 = 2+1+2+1, so a(6)=4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; `if`(n=0, 1, add(add( `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n) end: a:= n-> add(b(d), d=divisors(n) minus {n}): seq(a(n), n=1..100); # Alois P. Heinz, Jul 11 2016
-
Mathematica
b[n_] := b[n] = If[n == 0, 1, Sum[Sum[If[OddQ[d], d, 0], {d, Divisors[j]}]* b[n-j], {j, 1, n}]/n]; a[n_] := Sum[b[d], {d, Divisors[n] ~Complement~ {n}}]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 25 2017, after Alois P. Heinz *)
Formula
a(n) = Sum(q(k)), where k divides n, k < n, where q(n) = A000009(n), distinct partitions. - Alford Arnold
Extensions
a(1) set to 0 by Alois P. Heinz, Jul 11 2016