A025015 Central decanomial coefficients: largest coefficient of (1 + x + ... + x^9)^n.
1, 1, 10, 75, 670, 6000, 55252, 512365, 4816030, 45433800, 432457640, 4123838279, 39581170420, 380242296850, 3671331273480, 35460394945125, 343900019857310, 3335361909606710, 32458256583753952, 315825118347405835
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n=0..200
- Vaclav Kotesovec, Recurrence
- Index entries for sequences of k-nomial coefficients
Crossrefs
Row 10 of A077042.
Programs
-
Mathematica
Flatten[{1,Table[Coefficient[Expand[Sum[x^j,{j,0,9}]^n],x^Floor[9*n/2]],{n,1,20}]}] (* Vaclav Kotesovec, Aug 09 2013 *)
Formula
a(n) = Sum_{k=0..floor(9*n/20)}(-1)^(k)*binomial(n, k)*binomial(n+floor(9*n/2)-10*k-1, n-1). - Warut Roonguthai, Jun 08 2006
a(n) ~ 10^n * sqrt(2/(33*Pi*n)). - Vaclav Kotesovec, Aug 09 2013
Comments