A025019 Smallest prime in Goldbach partition of A025018(n).
2, 3, 5, 7, 19, 23, 31, 47, 73, 103, 139, 173, 211, 233, 293, 313, 331, 359, 383, 389, 523, 601, 727, 751, 829, 929, 997, 1039, 1093, 1163, 1321, 1427, 1583, 1789, 1861, 1877, 1879, 2029, 2089, 2803, 3061, 3163, 3457, 3463, 3529, 3613, 3769, 3917, 4003, 4027, 4057
Offset: 1
Keywords
Examples
1427 and 1583 are two consecutive terms because A020481(167535419) = 1427 and A020481(209955962) = 1583 and for 167535419 < n < 209955962 A020481(n) <= 1427.
Links
- N. J. A. Sloane, Table of n, a(n) for n=1..67 (from the web page of Tomás Oliveira e Silva)
- Mark A. Herkommer, Goldbach Conjecture Research
- Tomás Oliveira e Silva, Goldbach conjecture verification
- Jörg Richstein, Verifying the Goldbach conjecture up to 4 * 10^14, Math. Comp., 70 (2001), 1745-1749.
- Index entries for sequences related to Goldbach conjecture
Programs
-
Mathematica
p = 1; q = {}; Do[ k = 2; While[ !PrimeQ[k] || !PrimeQ[2n - k], k++ ]; If[k > p, p = k; q = Append[q, p]], {n, 2, 10^8}]; q
Extensions
Edited and extended by Robert G. Wilson v, Dec 13 2002
More terms and b-file added by N. J. A. Sloane, Nov 28 2007
Comments