cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025086 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n-k+1), where k = floor(n/2), s = A000045, t = A023533.

Original entry on oeis.org

0, 0, 1, 1, 2, 0, 0, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 988, 1598, 2586, 4184, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17712, 28658, 46370, 75028, 121398, 196426, 317824, 514250
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
    A025086:= func< n | (&+[Fibonacci(k)*A023533(n+1-k): k in [1..Floor(n/2)]]) >;
    [A025086(n): n in [2..100]]; // G. C. Greubel, Sep 08 2022
    
  • Mathematica
    b[j_]:= b[j]= Sum[KroneckerDelta[j, Binomial[m+2,3]], {m,0,15}];
    A025086[n_]:= A025086[n]= Sum[Fibonacci[n-j+1]*b[j], {j, Floor[(n+3)/2], n}];
    Table[A025086[n], {n,2,100}] (* G. C. Greubel, Sep 08 2022 *)
  • SageMath
    @CachedFunction
    def b(j): return sum(bool(j==binomial(m+2,3)) for m in (0..10))
    @CachedFunction
    def A025086(n): return sum(fibonacci(n-j+1)*b(j) for j in (((n+3)//2)..n))
    [A025086(n) for n in (2..100)] # G. C. Greubel, Sep 08 2022

Extensions

Offset corrected by G. C. Greubel, Sep 08 2022