A025125 a(n) = s(1)*s(n) + s(2)*s(n-1) + ... + s(k)*s(n-k+1), where k = floor(n/2), s = A023533.
0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Crossrefs
Cf. A023533.
Programs
-
Magma
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >; A025125:= func< n | (&+[A023533(k)*A023533(n+2-k): k in [1..Floor((n+1)/2)]]) >; [A025125(n): n in [1..130]]; // G. C. Greubel, Sep 14 2022
-
Mathematica
b[j_]:= b[j]= Sum[KroneckerDelta[j, Binomial[m+2,3]], {m,0,15}]; A025125[n_]:= A025125[n]= Sum[b[n -j+1]*b[j+1], {j, Floor[(n+2)/2], n}]; Table[A025125[n], {n,130}] (* G. C. Greubel, Sep 14 2022 *)
-
SageMath
@CachedFunction def b(j): return sum(bool(j==binomial(m+2,3)) for m in (0..15)) @CachedFunction def A025125(n): return sum(b(n-j+1)*b(j+1) for j in (((n+2)//2)..n)) [A025125(n) for n in (1..130)] # G. C. Greubel, Sep 14 2022