A025127 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n-k+1), where k = floor(n/2), s = A023533, t = A000040 (primes).
3, 5, 7, 11, 13, 17, 30, 36, 46, 50, 60, 70, 74, 84, 94, 102, 108, 120, 161, 171, 187, 197, 209, 229, 243, 253, 271, 281, 289, 313, 323, 339, 363, 381, 391, 403, 421, 431, 530, 552, 568, 592, 618, 630, 650, 674, 696, 712, 746, 768, 794, 802, 830, 846, 872, 906, 922, 942, 962
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Magma
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >; A025127:= func< n | (&+[NthPrime(n+2-k)*A023533(k): k in [1..Floor((n+1)/2)]]) >; [A025127(n): n in [1..100]]; // G. C. Greubel, Sep 14 2022
-
Mathematica
b[j_]:= b[j]= Sum[KroneckerDelta[j, Binomial[m+2,3]], {m,0,15}]; A025127[n_]:= A025127[n]= Sum[b[n-j+2]*Prime[j], {j, Floor[(n+4)/2], n+1}]; Table[A025127[n], {n,100}] (* G. C. Greubel, Sep 14 2022 *)
-
SageMath
def b(j): return sum(bool(j==binomial(m+2,3)) for m in (0..13)) @CachedFunction def A025127(n): return sum(b(n-j+2)*nth_prime(j) for j in (((n+4)//2)..n+1)) [A025127(n) for n in (1..100)] # G. C. Greubel, Sep 14 2022