A025159 Number of partitions of n with distinct parts p(i) such that if i != j, then |p(i) - p(j)| >= 5.
1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 9, 10, 12, 13, 15, 17, 19, 21, 24, 26, 29, 32, 35, 38, 42, 46, 50, 55, 60, 66, 72, 79, 86, 95, 103, 113, 123, 135, 146, 160, 173, 189, 204, 222, 239, 260, 280, 303, 326, 353, 379, 410, 440, 475, 510, 550, 590, 636, 682
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Formula
G.f.: Sum(x^(5/2*k^2-3/2*k)/Product(1-x^i, i=1..k), k=1..infinity). - Vladeta Jovovic, Aug 12 2004
a(n) ~ c^(1/4) * r * exp(2*sqrt(c*n)) / (2*sqrt(Pi*(1-r)*(5-4*r)) * n^(3/4)), where r = 0.754877666246692760049508896358528691894606617772793143989... is the root of the equation r^5 + r = 1 and c = 5*log(r)^2/2 + polylog(2, 1-r) = 0.45973143655369174108251201834952526825516678... . - Vaclav Kotesovec, Jan 02 2016
Extensions
More terms from Vladeta Jovovic, Aug 12 2004