cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025264 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 4, starting 2,1,1.

Original entry on oeis.org

2, 1, 1, 5, 22, 99, 450, 2067, 9586, 44852, 211570, 1005427, 4810460, 23157904, 112110906, 545524287, 2666864340, 13092764136, 64527778938, 319157531592, 1583724160896, 7882364163954, 39339994155288, 196843821874407, 987272738842392
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A025266.

Programs

  • Maple
    A025264 := proc(n)
        option remember ;
        if n < 4 then
            op(n,[2,1,1]) ;
        else
            add( procname(i)*procname(n-i),i=1..n-1) ;
        end if;
    end proc:
    seq(A025264(n),n=1..20) ; # R. J. Mathar, Jan 13 2025
  • Mathematica
    nmax = 30; aa = ConstantArray[0,nmax]; aa[[1]] = 2; aa[[2]] = 1; aa[[3]] = 1; Do[aa[[n]] = Sum[aa[[k]] * aa[[n-k]],{k,1,n-1}],{n,4,nmax}]; aa (* Vaclav Kotesovec, Jan 25 2015 *)
  • PARI
    a(n)=polcoeff((1-sqrt(1-8*x+12*x^2+12*x^3+x*O(x^n)))/2,n)

Formula

G.f.: (1-sqrt(1-8*x+12*x^2+12*x^3))/2. - Michael Somos, Jun 08 2000
Recurrence: n*a(n) = 4*(2*n-3)*a(n-1) - 12*(n-3)*a(n-2) - 6*(2*n-9)*a(n-3). - Vaclav Kotesovec, Jan 25 2015