cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025271 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 5, with initial values 1,1,2,1.

Original entry on oeis.org

1, 1, 2, 1, 6, 18, 52, 165, 518, 1646, 5308, 17258, 56604, 187108, 622632, 2084461, 7016134, 23730006, 80610156, 274911614, 940915892, 3230919164, 11127525464, 38429281122, 133052559772, 461740643276, 1605877668824, 5596283069300
Offset: 1

Views

Author

Keywords

Programs

  • Maple
    For a Maple program see A214198.
  • Mathematica
    nmax = 30; aa = ConstantArray[0,nmax]; aa[[1]] = 1; aa[[2]] = 1; aa[[3]] = 2; aa[[4]] = 1; Do[aa[[n]] = Sum[aa[[k]]*aa[[n-k]],{k,1,n-1}],{n,5,nmax}]; aa (* Vaclav Kotesovec, Jan 25 2015 *)
  • PARI
    default(seriesprecision, 100); Vec((1-sqrt(1-4*x+16*x^4))/2 + O(x^50)) \\ Michel Marcus, Nov 22 2014

Formula

G.f.: (1/2)*(1-sqrt(1-4*x+2^(k+1)*x^(k+1))) with k=3. - N. J. A. Sloane, Jul 07 2012
Conjecture: n*a(n) +(n+1)*a(n-1) +(n+8)*a(n-2) +42*(-2*n+7)*a(n-3) +16*(n-6)*a(n-4) +80*(n-7)*a(n-5) +336*(n-8)*a(n-6)=0. - R. J. Mathar, Nov 21 2014
Recurrence: n*a(n) = 2*(2*n-3)*a(n-1) - 16*(n-6)*a(n-4). - Vaclav Kotesovec, Jan 25 2015