A025273 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 5, starting 1,0,1,1.
1, 0, 1, 1, 2, 5, 12, 29, 72, 182, 466, 1207, 3158, 8334, 22158, 59299, 159614, 431838, 1173710, 3203244, 8774780, 24118522, 66497316, 183858411, 509670494, 1416231616, 3944027402, 11006186760, 30772507128, 86191006746, 241815195292, 679488418879
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..2140
- Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018.
Programs
-
Maple
f:= gfun:-rectoproc({(n+1)*a(n) +2*(-2*n+1)*a(n-1) +4*(n-2)*a(n-2) +2*(-2*n+7)*a(n-3) +4*(n-5)*a(n-4)=0, a(0)=1,a(1)=0,a(2)=1,a(3)=1},a(n),remember): map(f, [$0..50]); # Robert Israel, Nov 02 2016 # alternative A025273 := proc(n) option remember ; if n < 5 then op(n,[1,0,1,1]) ; else add( procname(i)*procname(n-i),i=1..n-1) ; end if; end proc: seq(A025273(n),n=1..20) ; # R. J. Mathar, Jan 13 2025
-
Mathematica
nmax = 30; aa = ConstantArray[0,nmax]; aa[[1]] = 1; aa[[2]] = 0; aa[[3]] = 1; aa[[4]] = 1; Do[aa[[n]] = Sum[aa[[k]]*aa[[n-k]],{k,1,n-1}],{n,5,nmax}]; aa (* Vaclav Kotesovec, Jan 25 2015 *) CoefficientList[Series[(1-Sqrt[1-4*x+4*x^2-4*x^3+4*x^4])/(2*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2015 *)
Formula
G.f. (with offset 0 instead of 1): (1-sqrt(1-4*x+4*x^2-4*x^3+4*x^4))/(2*x). - Paul Barry, May 11 2005
Conjecture: (with offset 0 instead of 1) (n+1)*a(n) +2*(-2*n+1)*a(n-1) +4*(n-2)*a(n-2) +2*(-2*n+7)*a(n-3) +4*(n-5)*a(n-4)=0. - R. J. Mathar, Nov 24 2012
Conjecture follows from the differential equation 4*x^3-3*x^2+2*x-1+(-4*x^4+2*x^3-2*x+1)*g(x)+(4*x^5-4*x^4+4*x^3-4*x^2+x)*g'(x)=0 satisfied by the g.f. - Robert Israel, Nov 02 2016
Comments