cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025273 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 5, starting 1,0,1,1.

Original entry on oeis.org

1, 0, 1, 1, 2, 5, 12, 29, 72, 182, 466, 1207, 3158, 8334, 22158, 59299, 159614, 431838, 1173710, 3203244, 8774780, 24118522, 66497316, 183858411, 509670494, 1416231616, 3944027402, 11006186760, 30772507128, 86191006746, 241815195292, 679488418879
Offset: 1

Views

Author

Keywords

Comments

The binomial transform of A025250(n+1) is A025273(n+2). - Paul Barry, May 11 2005

Programs

  • Maple
    f:= gfun:-rectoproc({(n+1)*a(n) +2*(-2*n+1)*a(n-1) +4*(n-2)*a(n-2) +2*(-2*n+7)*a(n-3) +4*(n-5)*a(n-4)=0, a(0)=1,a(1)=0,a(2)=1,a(3)=1},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Nov 02 2016
    # alternative
    A025273 := proc(n)
        option remember ;
        if n < 5 then
            op(n,[1,0,1,1]) ;
        else
            add( procname(i)*procname(n-i),i=1..n-1) ;
        end if;
    end proc:
    seq(A025273(n),n=1..20) ; # R. J. Mathar, Jan 13 2025
  • Mathematica
    nmax = 30; aa = ConstantArray[0,nmax]; aa[[1]] = 1; aa[[2]] = 0; aa[[3]] = 1; aa[[4]] = 1; Do[aa[[n]] = Sum[aa[[k]]*aa[[n-k]],{k,1,n-1}],{n,5,nmax}]; aa (* Vaclav Kotesovec, Jan 25 2015 *)
    CoefficientList[Series[(1-Sqrt[1-4*x+4*x^2-4*x^3+4*x^4])/(2*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2015 *)

Formula

G.f. (with offset 0 instead of 1): (1-sqrt(1-4*x+4*x^2-4*x^3+4*x^4))/(2*x). - Paul Barry, May 11 2005
Conjecture: (with offset 0 instead of 1) (n+1)*a(n) +2*(-2*n+1)*a(n-1) +4*(n-2)*a(n-2) +2*(-2*n+7)*a(n-3) +4*(n-5)*a(n-4)=0. - R. J. Mathar, Nov 24 2012
Conjecture follows from the differential equation 4*x^3-3*x^2+2*x-1+(-4*x^4+2*x^3-2*x+1)*g(x)+(4*x^5-4*x^4+4*x^3-4*x^2+x)*g'(x)=0 satisfied by the g.f. - Robert Israel, Nov 02 2016