cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A217333 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^2 * x^k/(1-x)^k ).

Original entry on oeis.org

1, 1, 2, 5, 12, 29, 72, 182, 466, 1207, 3158, 8334, 22158, 59299, 159614, 431838, 1173710, 3203244, 8774780, 24118522, 66497316, 183858411, 509670494, 1416231616, 3944027402, 11006186760, 30772507128, 86191006746, 241815195292, 679488418879, 1912123070998
Offset: 0

Views

Author

Paul D. Hanna, Sep 30 2012

Keywords

Comments

The radius of convergence of g.f. A(x) is r = 0.339332122592393190... where 1-4*r+4*r^2-4*r^3+4*r^4 = 0, with A(r) = (1-2*r)/(2*r^3) = 4.112009743749...

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 12*x^4 + 29*x^5 + 72*x^6 + 182*x^7 +...
		

Crossrefs

Programs

  • Mathematica
    (1 - 2x - Sqrt[1 - 4x + 4x^2 - 4x^3 + 4x^4])/(2x^3) + O[x]^31 // CoefficientList[#, x]& (* Jean-François Alcover, Oct 27 2018 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m,k)^2*x^k/(1-x+x*O(x^n))^k))),n)}
    
  • PARI
    {a(n)=polcoeff((1-2*x - sqrt(1-4*x+4*x^2-4*x^3+4*x^4 +x^4*O(x^n)))/(2*x^3),n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f.: (1-2*x - sqrt(1-4*x+4*x^2-4*x^3+4*x^4))/(2*x^3).
Conjecture: (n+3)*a(n) +2*(-2*n-3)*a(n-1) +4*n*a(n-2) +2*(-2*n+3)*a(n-3) +4*(n-3)*a(n-4)=0. - R. J. Mathar, May 17 2019
G.f. A(x) satisfies: A(x) = 1 + x * (1 + x^2*A(x)^2) / (1 - 2*x). - Ilya Gutkovskiy, Jun 30 2020

A307788 Number of valid hook configurations of permutations of [n] that avoid the patterns 231 and 321.

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 29, 72, 182, 466, 1207, 3158, 8334, 22158, 59299, 159614, 431838, 1173710, 3203244, 8774780, 24118522, 66497316, 183858411, 509670494, 1416231616, 3944027402, 11006186760, 30772507128, 86191006746, 241815195292
Offset: 0

Views

Author

Colin Defant, Apr 28 2019

Keywords

Comments

Essentially the same as A217333 and A025273. - R. J. Mathar, May 17 2019

Crossrefs

Programs

  • PARI
    my(x='x+O('x^35)); Vec((1 - 2*x + 2*x^2 - sqrt(1 - 4*x + 4*x^2 - 4*x^3 + 4*x^4))/(2*x^2)) \\ Michel Marcus, May 08 2019

Formula

G.f.: (1 - 2*x + 2*x^2 - sqrt(1 - 4*x + 4*x^2 - 4*x^3 + 4*x^4)) / (2*x^2).
D-finite with recurrence: (n+2)*a(n) +2*(-2*n-1)*a(n-1) +4*(n-1)*a(n-2) +2*(-2*n+5)*a(n-3) +4*(n-4)*a(n-4)=0. - R. J. Mathar, May 17 2019
Showing 1-2 of 2 results.