A025276 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ... + a(n-1)*a(1) for n >= 5, with a(1) = 1, a(2) = a(3) = 0, a(4) = 1.
1, 0, 0, 1, 2, 4, 8, 17, 38, 88, 208, 498, 1204, 2936, 7216, 17861, 44486, 111408, 280352, 708526, 1797564, 4576472, 11688496, 29939786, 76894684, 197974480, 510864480, 1321031716, 3422685992, 8884010928, 23098674400, 60152509613, 156879556678
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See pp. 20.
- Yan Zhuang, A generalized Goulden-Jackson cluster method and lattice path enumeration, Discrete Mathematics 341.2 (2018): 358-379; arXiv:1508.02793 [math.CO], 2015-2018.
Programs
-
Haskell
a025276 n = a025276_list !! (n-1) a025276_list = 1 : 0 : 0 : 1 : f [1,0,0,1] where f xs = x' : f (x':xs) where x' = sum $ zipWith (*) xs a025276_list -- Reinhard Zumkeller, Nov 03 2011
-
Mathematica
nmax = 30; aa = ConstantArray[0,nmax]; aa[[1]] = 1; aa[[2]] = 0; aa[[3]] = 0; aa[[4]] = 1; Do[aa[[n]] = Sum[aa[[k]]*aa[[n-k]],{k,1,n-1}],{n,5,nmax}]; aa (* Vaclav Kotesovec, Jan 25 2015 *)
Formula
G.f.: (1 - sqrt((1-2*z)^2 - 4*z^4))/2. - Emeric Deutsch, Dec 23 2003
Recurrence: n*a(n) = 2*(2*n-3)*a(n-1) - 4*(n-3)*a(n-2) + 4*(n-6)*a(n-4). - Vaclav Kotesovec, Jan 25 2015
a(n) ~ sqrt((9-5*sqrt(3))/(8*Pi*n^3))*(2/(sqrt(3)-1))^n. - Ricardo Gómez Aíza, Mar 01 2024
Extensions
Definition improved by Bernard Schott, Jun 27 2022
Comments