A025277 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 5, with initial values 0,0,1,1.
0, 0, 1, 1, 0, 1, 2, 1, 2, 6, 6, 7, 20, 30, 34, 75, 140, 182, 322, 644, 972, 1554, 3024, 5091, 8052, 14784, 26378, 43032, 75504, 136994, 232232, 399399, 720356, 1257256, 2161874, 3852576, 6831552, 11858418, 20949304, 37350768
Offset: 1
Keywords
Programs
-
Maple
A025277:= gfun:-rectoproc({a(n) = (4 - 24/n)*a(n-4) + (4 - 18/n)*a(n-3), a(1)=0,a(2)=0,a(3)=1,a(4)=1},a(n),remember): seq(A025277(n),n=1..100); # Robert Israel, Nov 21 2014
-
Mathematica
nmax = 30; aa = ConstantArray[0,nmax]; aa[[1]] = 0; aa[[2]] = 0; aa[[3]] = 1; aa[[4]] = 1; Do[aa[[n]] = Sum[aa[[k]]*aa[[n-k]],{k,1,n-1}],{n,5,nmax}]; aa (* Vaclav Kotesovec, Jan 25 2015 *) a[n_] := Sum[Binomial[n-2*m-3, m]*Binomial[2*m+1, n-2*m-3]/(2*m+1), {m, 0, (n-3)/2}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Apr 03 2015, after Vladimir Kruchinin *)
-
Maxima
a(n):=sum((binomial(n-2*m-3,m)*binomial(2*m+1,n-2*m-3))/(2*m+1),m,0,(n-3)/2); /* Vladimir Kruchinin, Nov 21 2014 */
Formula
G.f.: -(sqrt(1-4*x^4-4*x^3)-1)/2. - Vladimir Kruchinin, Nov 21 2014
a(n) = sum(m=0..(n-3)/2, (binomial(n-2*m-3,m)*binomial(2*m+1,n-2*m-3))/(2*m+1)). - Vladimir Kruchinin, Nov 21 2014
a(n) = (4 - 24/n)*a(n-4) + (4 - 18/n)*a(n-3). - Robert Israel, Nov 21 2014