cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025277 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 5, with initial values 0,0,1,1.

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 2, 1, 2, 6, 6, 7, 20, 30, 34, 75, 140, 182, 322, 644, 972, 1554, 3024, 5091, 8052, 14784, 26378, 43032, 75504, 136994, 232232, 399399, 720356, 1257256, 2161874, 3852576, 6831552, 11858418, 20949304, 37350768
Offset: 1

Views

Author

Keywords

Programs

  • Maple
    A025277:= gfun:-rectoproc({a(n) = (4 - 24/n)*a(n-4) + (4 - 18/n)*a(n-3), a(1)=0,a(2)=0,a(3)=1,a(4)=1},a(n),remember):
    seq(A025277(n),n=1..100); # Robert Israel, Nov 21 2014
  • Mathematica
    nmax = 30; aa = ConstantArray[0,nmax]; aa[[1]] = 0; aa[[2]] = 0; aa[[3]] = 1; aa[[4]] = 1; Do[aa[[n]] = Sum[aa[[k]]*aa[[n-k]],{k,1,n-1}],{n,5,nmax}]; aa (* Vaclav Kotesovec, Jan 25 2015 *)
    a[n_] := Sum[Binomial[n-2*m-3, m]*Binomial[2*m+1, n-2*m-3]/(2*m+1), {m, 0, (n-3)/2}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Apr 03 2015, after Vladimir Kruchinin *)
  • Maxima
    a(n):=sum((binomial(n-2*m-3,m)*binomial(2*m+1,n-2*m-3))/(2*m+1),m,0,(n-3)/2); /* Vladimir Kruchinin, Nov 21 2014 */

Formula

G.f.: -(sqrt(1-4*x^4-4*x^3)-1)/2. - Vladimir Kruchinin, Nov 21 2014
a(n) = sum(m=0..(n-3)/2, (binomial(n-2*m-3,m)*binomial(2*m+1,n-2*m-3))/(2*m+1)). - Vladimir Kruchinin, Nov 21 2014
a(n) = (4 - 24/n)*a(n-4) + (4 - 18/n)*a(n-3). - Robert Israel, Nov 21 2014