A025323 Numbers that are the sum of 3 nonzero squares in exactly 3 ways.
54, 66, 81, 86, 89, 99, 101, 110, 114, 126, 131, 149, 150, 162, 166, 173, 174, 179, 182, 185, 186, 216, 219, 221, 222, 225, 227, 233, 237, 241, 242, 245, 258, 264, 274, 275, 286, 291, 302, 305, 309, 315, 318, 323, 324, 334, 338, 344, 347, 349, 356, 361, 366, 377, 396
Offset: 1
Keywords
Examples
182 is a term because 182 = 1^2 + 9^2 + 10^2 = 2^2 + 3^2 + 13^2 = 5^2 + 6^2 + 11^2 and there are no more such sums of three nonzero squares giving 182. - _David A. Corneth_, Feb 13 2019
Links
- David A. Corneth, Table of n, a(n) for n = 1..1069 (first 418 terms from Robert Price, terms < 2*10^6)
- David A. Corneth, PARI program
- David A. Corneth, Terms below (inclusive) 2*10^6 with the sums of squares
- Eric Weisstein's World of Mathematics, Square Number.
- Index entries for sequences related to sums of squares
Crossrefs
Programs
-
Mathematica
Select[Range@ 400, Length@ # == 3 &@ DeleteCases[PowersRepresentations[#, 3, 2], ?(AnyTrue[#, # == 0 &] &)] &] (* _Michael De Vlieger, Feb 13 2019 *)
-
PARI
\\ See Corneth link. David A. Corneth, Feb 13 2019
Formula
{n: A025427(n) = 3}. - R. J. Mathar, Aug 05 2022