A025411 Numbers that are the sum of 4 distinct positive cubes.
100, 161, 198, 217, 224, 252, 289, 308, 315, 350, 369, 376, 379, 406, 413, 416, 432, 435, 442, 477, 496, 503, 533, 540, 548, 559, 568, 585, 587, 594, 604, 611, 624, 631, 646, 650, 665, 672, 685, 692, 702, 709, 711, 728, 737, 748, 756, 763, 765, 793, 800, 802, 819, 821, 828, 854, 861, 863, 864, 880, 882, 883, 889, 890, 917, 919, 920, 926, 927, 945, 946, 954, 973, 980, 981, 988, 1007, 1010, 1017, 1036
Offset: 1
Keywords
Examples
a(80) = 1036 = 1+8+27+1000 = 27+64+216+729.
Programs
-
Maple
isA025411:= proc(n) local a, x, y, z,wcu ; for x from 1 do if 4*x^3 > n then return false; end if; for y from x+1 do if x^3+3*y^3 > n then break; end if; for z from y+1 do if x^3+y^3+2*z^3 > n then break; end if; wcu := n-x^3-y^3-z^3 ; if wcu > z^3 and isA000578(wcu) then return true ; end if; end do end do: end do: end proc: for n from 1 to 1100 do if isA025411(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Jun 15 2018
-
Mathematica
smax = 1036; imax = smax^(1/3) // Ceiling; Table[If[Less[i, j, k, l] && (s = i^3 + j^3 + k^3 + l^3) <= smax, s, Nothing], {i, 1, imax}, {j, i+1, imax}, {k, j+1, imax}, {l, k+1, imax}] // Flatten // Union (* Jean-François Alcover, Jun 26 2023 *)
Extensions
More terms from Ray Chandler, Feb 19 2005
Comments