A025444 Number of partitions of n into 5 distinct nonzero squares.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 1, 0
Offset: 0
Examples
a(111) = 2 via 1 + 4 + 9 + 16 + 81 = 1 + 9 + 16 + 36 + 49. - _David A. Corneth_, Feb 02 2021
Links
Crossrefs
Programs
-
Maple
From R. J. Mathar, Oct 18 2010: (Start) A025444aux := proc(n,m,nmax) local a,m,upn,lv ; if m = 1 then if issqr(n) and nmax^2 >= n and n >= 1 then return 1; else return 0; end if; else a := 0 ; for upn from 1 to nmax do lv := n-upn^2 ; if lv <0 then break; end if; a := a + procname(lv,m-1,upn-1) ; end do: return a; end if; end proc: A025444 := proc(n) A025444aux(n,5,n) ; end proc: (End)
Formula
a(n) = [x^n y^5] Product_{k>=1} (1 + y*x^(k^2)). - Ilya Gutkovskiy, Apr 22 2019