A025466 Number of partitions of n into 4 distinct nonnegative cubes.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Examples
For n=540 we have two solutions: 540 = (0^3 + 1^3 + 3^3 + 8^3) = (2^3 + 4^3 + 5^3 + 7^3), thus a(540) = 2. This is the first point where a(n) > 1. - _Antti Karttunen_, Sep 21 2018
Links
- Antti Karttunen, Table of n, a(n) for n = 0..12121
Programs
-
PARI
A025466(n) = { my(s=0); for(w=0,n,if(ispower(w,3),for(x=w+1,n-w,if(ispower(x,3),for(y=x+1,n-(w+x),if(ispower(y,3),for(z=y+1,n-(w+x+y),if((ispower(z,3)&&(w+x+y+z)==n),s++)))))))); (s); }; \\ Antti Karttunen, Sep 21 2018
Extensions
Secondary offset added by Antti Karttunen, Sep 21 2018
Comments