A025564 Triangular array, read by rows: pairwise sums of trinomial array A027907.
1, 1, 2, 1, 1, 3, 4, 3, 1, 1, 4, 8, 10, 8, 4, 1, 1, 5, 13, 22, 26, 22, 13, 5, 1, 1, 6, 19, 40, 61, 70, 61, 40, 19, 6, 1, 1, 7, 26, 65, 120, 171, 192, 171, 120, 65, 26, 7, 1, 1, 8, 34, 98, 211, 356, 483, 534, 483, 356, 211, 98, 34, 8, 1, 1, 9, 43, 140, 343, 665, 1050, 1373
Offset: 0
Examples
1 1 2 1 1 3 4 3 1 1 4 8 10 8 4 1 1 5 13 22 26 22 13 5 1
Programs
-
Mathematica
T[, 0] = 1; T[1, 1] = 2; T[n, k_] /; 0 <= k <= 2n := T[n, k] = T[n-1, k-2] + T[n-1, k-1] + T[n-1, k]; T[, ] = 0; Table[T[n, k], {n, 0, 10}, {k, 0, 2n}] // Flatten (* Jean-François Alcover, Jul 22 2018 *)
-
PARI
{T(n, k) = if( k<0 || k>2*n, 0, if( n==0, 1, if( n==1, [1,2,1][k+1], if( n==2, [1,3,4,3,1][k+1], T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)))))};
-
PARI
T(n,k)=polcoeff(Ser(polcoeff(Ser((1+y*z)/(1-z*(1+y+y^2)),y),k,y),z),n,z)
-
PARI
{T(n, k) = if( k<0 || k>2*n, 0, if(n==0, 1, polcoeff( (1 + x + x^2)^n, k)+ polcoeff( (1 + x + x^2)^(n-1), k-1)))};
Formula
T(n, k) = T(n-1, k-2) + T(n-1, k-1) + T(n-1, k), starting with [1], [1, 2, 1], [1, 3, 4, 3, 1].
G.f.: (1+yz)/[1-z(1+y+y^2)].
Extensions
Edited by Ralf Stephan, Jan 09 2005
Edited by Clark Kimberling, Jun 20 2012
Comments