cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A025565 a(n) = T(n,n-1), where T is array defined in A025564.

Original entry on oeis.org

1, 2, 4, 10, 26, 70, 192, 534, 1500, 4246, 12092, 34606, 99442, 286730, 829168, 2403834, 6984234, 20331558, 59287740, 173149662, 506376222, 1482730098, 4346486256, 12754363650, 37461564504, 110125172682, 323990062452, 953883382354
Offset: 1

Views

Author

Keywords

Comments

a(n+1) is the number of UDU-free paths of n upsteps (U) and n downsteps (D), n>=0. - David Callan, Aug 19 2004
Hankel transform is A120580. - Paul Barry, Mar 26 2010
If interpreted with offset 0, the inverse binomial transform of A006134 - Gary W. Adamson, Nov 10 2007
Also the number of different integer sets { k_1, k_2, ..., k_(i+1) } with Sum_{j=1..i+1} k_j = i and k_j >= 0, see the "central binomial coefficients" (A000984), without all sets in which any two successive k_j and k_(j+1) are zero. See the partition problem eq. 3.12 on p. 19 in my dissertation below. - Eva Kalinowski, Oct 18 2012

Examples

			G.f. = x + 2*x^2 + 4*x^3 + 10*x^4 + 26*x^5 + 70*x^6 + 192*x^7 + 534*x^8 + ...
		

Crossrefs

First column of A097692.
Partial sums of A105696.

Programs

  • Haskell
    a025565 n = a025565_list !! (n-1)
    a025565_list = 1 : f a001006_list [1] where
       f (x:xs) ys = y : f xs (y : ys) where
         y = x + sum (zipWith (*) a001006_list ys)
    -- Reinhard Zumkeller, Mar 30 2012
    
  • Maple
    seq( add(binomial(i-2, k)*(binomial(i-k, k+1)), k=0..floor(i/2)), i=1..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 09 2001
    # Alternatively:
    a := n -> `if`(n=1,1,2*(-1)^n*hypergeom([3/2, 2-n], [2], 4)):
    seq(simplify(a(n)),n=1..28); # Peter Luschny, Jan 30 2017
  • Mathematica
    T[, 0] = 1; T[1, 1] = 2; T[n, k_] /; 0 <= k <= 2n := T[n, k] = T[n-1, k-2] + T[n-1, k-1] + T[n-1, k]; T[, ] = 0;
    a[n_] := T[n-1, n-1];
    Array[a, 30] (* Jean-François Alcover, Jul 30 2018 *)
  • Sage
    def A():
        a, b, n  = 1, 1, 1
        yield a
        while True:
            yield a + b
            n += 1
            a, b = b, ((3*(n-1))*a+(2*n-1)*b)//n
    A025565 = A()
    print([next(A025565) for  in range(28)]) # _Peter Luschny, Jan 30 2017

Formula

G.f.: x*sqrt((1+x)/(1-3*x)).
a(n) = 2*A005773(n-1) for n > 1.
a(n) = |A085455(n-1)| = A025577(n) - A025577(n-1) = A002426(n) + A002426(n-1).
Sum_{i=0..n} Sum_{j=0..i} (-1)^(n-i)*a(j)*a(i-j) = 3^n. - Mario Catalani (mario.catalani(AT)unito.it), Jul 02 2003
a(1) = 1, a(n) = M(n-1) + Sum_{k=1..n-1} M(k-1)*a(n-k) with M=A001006, the Motzkin Numbers. - Reinhard Zumkeller, Mar 30 2012
D-finite with recurrence: (-n+1)*a(n) +2*(n-1)*a(n-1) +3*(n-3)*a(n-2)=0. - R. J. Mathar, Dec 02 2012
G.f.: G(0), where G(k) = 1 + 4*x*(4*k+1)/( (1+x)*(4*k+2) - x*(1+x)*(4*k+2)*(4*k+3)/(x*(4*k+3) + (1+x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 26 2013
a(n) = n*hypergeom([2-n, 1/2-n/2, 1-n/2], [2, -n], 4). - Peter Luschny, Jul 12 2016
a(n) = (-1)^n*2*hypergeom([3/2, 2-n], [2], 4) for n > 1. - Peter Luschny, Jan 30 2017

Extensions

Incorrect statement related to A000984 (see A002426) and duplicate of the g.f. removed by R. J. Mathar, Oct 16 2009
Edited by R. J. Mathar, Aug 09 2010

A025566 a(n) = number of (s(0), s(1), ..., s(n)) such that every s(i) is a nonnegative integer, s(0) = 0, s(1) = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = sum of numbers in row n+1 of the array T defined in A026105. Also a(n) = T(n,n), where T is the array defined in A025564.

Original entry on oeis.org

1, 1, 1, 3, 8, 22, 61, 171, 483, 1373, 3923, 11257, 32418, 93644, 271219, 787333, 2290200, 6673662, 19478091, 56930961, 166613280, 488176938, 1431878079, 4203938697, 12353600427, 36331804089, 106932444885, 314946659951, 928213563878
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is the number of Motzkin (2n)-paths whose last weak valley occurs immediately after step n. A weak valley in a Motzkin path (A001006) is an interior vertex whose following step has nonnegative slope and whose preceding step has nonpositive slope. For example, the weak valleys in the Motzkin path F.UF.FD.UD occur after the first, third and fifth steps as indicated by the dots (U=upstep of slope 1, D=downstep of slope -1, F=flatstep of slope 0) and, with n=2, a(3)=3 counts FFUD, UDUD, UFFD. - David Callan, Jun 07 2006
Starting with offset 2: (1, 3, 8, 22, 61, 171, 483, ...), = row sums of triangle A136537. - Gary W. Adamson, Jan 04 2008

Crossrefs

First differences of A026135. Row sums of triangle A026105.
Pairwise sums of A005727. Column k=2 in A115990.
Cf. A136537.

Programs

  • GAP
    List([0..30],i->Sum([0..Int(i/2)],k->Binomial(i-2,k)*Binomial(i-k,k))); # Muniru A Asiru, Mar 09 2019
  • Maple
    seq( sum('binomial(i-2,k)*binomial(i-k,k)', 'k'=0..floor(i/2)), i=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 09 2001
  • Mathematica
    CoefficientList[Series[x+(2x(x-1))/(1-3x-Sqrt[1-2x-3x^2]),{x,0,30}],x] (* Harvey P. Dale, Jun 12 2016 *)

Formula

G.f.: x + 2*x*(x-1)/(1-3x-sqrt(1-2x-3x^2)); for n > 1, first differences of the "directed animals" sequence A005773: a(n) = A005773(n) - A005773(n-1). - Emeric Deutsch, Aug 16 2002
Starting (1, 3, 8, 22, 61, 171, ...) gives the inverse binomial transform of A001791 starting (1, 4, 15, 56, 210, 792, ...). - Gary W. Adamson, Sep 01 2007
a(n) is the sum of the (n-2)-th row of triangle A131816. - Gary W. Adamson, Sep 01 2007
D-finite with recurrence n*a(n) +(-3*n+2)*a(n-1) +(-n+2)*a(n-2) +3*(n-4)*a(n-3)=0. - R. J. Mathar, Sep 15 2020

A025568 a(n) = T(n,n+2) where T is the array defined in A025564.

Original entry on oeis.org

1, 5, 19, 65, 211, 665, 2058, 6294, 19095, 57607, 173096, 518596, 1550367, 4627455, 13795176, 41088456, 122297643, 363828663, 1081966875, 3216725841, 9561635853, 28418162003, 84455354206, 250982289650, 745860104145, 2216567725281
Offset: 1

Views

Author

Keywords

Crossrefs

First differences are pairwise sums of A025181.
Pairwise sums of A014532.

A025567 a(n) = T(n,n+1), where T is the array defined in A025564.

Original entry on oeis.org

1, 4, 13, 40, 120, 356, 1050, 3088, 9069, 26620, 78133, 229384, 673699, 1979628, 5820195, 17121312, 50394579, 148413996, 437324919, 1289330520, 3803175474, 11223840012, 33139076292, 97889042384, 289276841475, 855205791076, 2529279459099
Offset: 1

Views

Author

Keywords

Crossrefs

Pairwise sums of A014531.

Programs

  • Mathematica
    T[, 0] = 1; T[1, 1] = 2; T[n, k_] /; 0 <= k <= 2n := T[n, k] = T[n-1, k-2] + T[n-1, k-1] + T[n-1, k]; T[, ] = 0;
    a[n_] := T[n+1, n+3];
    Array[a, 27] (* Jean-François Alcover, Oct 30 2018 *)
  • PARI
    x='x+O('x^66); Vec((x^2-1-sqrt(1+x)*(x^2+2*x-1)/sqrt(1-3*x))/(2*x^3)) \\ Joerg Arndt, May 01 2013

Formula

G.f.: (x^2-1-sqrt(1+x)*(x^2+2*x-1)/sqrt(1-3*x))/(2*x^3). - Mark van Hoeij, May 01 2013
Conjecture: (n+3)*a(n) +4*(-n-2)*a(n-1) +2*a(n-2) +8*(n-1)*a(n-3) +3*(n-3)*a(n-4)=0. - R. J. Mathar, Apr 03 2015
Conjecture: (n-1)*(n-2)*(n+3)*a(n) -2*n*(n-2)*(n+2)*a(n-1) -3*n*(n-1)^2*a(n-2)=0. - R. J. Mathar, Apr 03 2015
a(n) ~ 2 * 3^(n + 1/2) / sqrt(Pi*n). - Vaclav Kotesovec, May 02 2024

A025574 T(2n,n+1), where T is the array defined in A025564.

Original entry on oeis.org

1, 10, 61, 356, 2058, 11892, 68860, 399828, 2328066, 13591364, 79538750, 466489520, 2741310614, 16137748980, 95152639095, 561856988100, 3322001296650, 19664909435556, 116535288360106, 691284470658376, 4104450497833036, 24390520567203960, 145053186645586383
Offset: 1

Views

Author

Keywords

Comments

Coefficient of y^(n+1) in (y^2+2*y+1)*(y^2+y+1)^(2*n-2). - Robert Israel, Sep 07 2019

Crossrefs

Cf. A025564.

Programs

  • Maple
    f:= n -> coeff((y^2+2*y+1)*(y^2+y+1)^(2*n-2),y,n+1);
    map(f, [$1..30]); # Robert Israel, Sep 07 2019

Extensions

More terms from Sean A. Irvine, Sep 07 2019

A025569 T(2n-1,n), where T is the array defined in A025564.

Original entry on oeis.org

1, 4, 22, 120, 665, 3732, 21153, 120835, 694590, 4013088, 23284424, 135580865, 791862354, 4637009300, 27215510265, 160053426720, 942939231825, 5564024727096, 32878367902380, 194530139772844, 1152303896900338, 6832908809693304, 40556775927067299, 240938382783554100
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A025564.

Programs

  • PARI
    T(n, k) = if( k<0 || k>2*n, 0, if(n==0, 1, polcoeff( (1 + x + x^2)^n, k)+ polcoeff( (1 + x + x^2)^(n-1), k-1)));
    a(n) = T(2*n, n+1); \\ Michel Marcus, Sep 08 2019

Extensions

a(19) corrected and more terms from Sean A. Irvine, Sep 07 2019

A025570 a(n) = T(2n,n), where T is the array defined in A025564.

Original entry on oeis.org

1, 2, 8, 40, 211, 1148, 6369, 35816, 203424, 1164228, 6703372, 38785840, 225325940, 1313494396, 7679038865, 45006411960, 264357297375, 1555762562100, 9171399730944, 54148782940112, 320136500713070, 1895036382245032, 11230166960501463, 66619011999761208, 395563260817743219
Offset: 1

Views

Author

Keywords

Extensions

More terms from Sean A. Irvine, Sep 07 2019

A025571 a(n) = T(3n,n), where T is the array defined in A025564.

Original entry on oeis.org

1, 3, 19, 140, 1090, 8749, 71604, 593997, 4976785, 42016975, 356879250, 3046096983, 26105109424, 224485080580, 1936029865870, 16738879226139, 145041018993018, 1259189426140919, 10950454909118725, 95374995078513150, 831822673255797630, 7263789225782699928
Offset: 1

Views

Author

Keywords

Extensions

More terms from Sean A. Irvine, Sep 07 2019

A025572 a(n) = T(4n,n), where T is the array defined in A025564.

Original entry on oeis.org

1, 4, 34, 330, 3381, 35700, 384307, 4193020, 46203670, 513011312, 5730482707, 64324536822, 724966763955, 8198552413800, 92985865982415, 1057267681773972, 12047638469222921, 137547814582468048, 1573060924386848400, 18017644508154675426, 206653990802794950415
Offset: 1

Views

Author

Keywords

Extensions

More terms from Sean A. Irvine, Sep 07 2019

A025573 a(n) = T(2n,n-1), where T is the array defined in A025564.

Original entry on oeis.org

1, 4, 19, 98, 526, 2892, 16159, 91338, 520794, 2989688, 17256275, 100046894, 582204290, 3398722420, 19894375665, 116724946350, 686260868346, 4042058735880, 23846068472626, 140882925528892, 833421929615236, 4936088399361876, 29266184138206509, 173689743532678182
Offset: 1

Views

Author

Keywords

Extensions

More terms from Sean A. Irvine, Sep 07 2019
Showing 1-10 of 15 results. Next