A025565
a(n) = T(n,n-1), where T is array defined in A025564.
Original entry on oeis.org
1, 2, 4, 10, 26, 70, 192, 534, 1500, 4246, 12092, 34606, 99442, 286730, 829168, 2403834, 6984234, 20331558, 59287740, 173149662, 506376222, 1482730098, 4346486256, 12754363650, 37461564504, 110125172682, 323990062452, 953883382354
Offset: 1
G.f. = x + 2*x^2 + 4*x^3 + 10*x^4 + 26*x^5 + 70*x^6 + 192*x^7 + 534*x^8 + ...
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Kassie Archer and Christina Graves, A new statistic on Dyck paths for counting 3-dimensional Catalan words, arXiv:2205.09686 [math.CO], 2022.
- Andrei Asinowski and Cyril Banderier, On Lattice Paths with Marked Patterns: Generating Functions and Multivariate Gaussian Distribution, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020) Leibniz International Proceedings in Informatics (LIPIcs) Vol. 159, 1:1-1:16.
- D. Baccherini, D. Merlini, and R. Sprugnoli, Binary words excluding a pattern and proper Riordan arrays, Discrete Math. 307 (2007), no. 9-10, 1021--1037. MR2292531 (2008a:05003). See page 1034. - _N. J. A. Sloane_, Mar 25 2014
- J. L. Jacobsen and J. Salas, Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models IV. Chromatic polynomial with cyclic boundary conditions, J. Stat. Phys. 122 (2006) 705-760; arXiv:cond-mat/0407444, 2004-2006. Mentions this sequence. - _N. J. A. Sloane_, Mar 14 2014
- Eva Kalinowski, Mott-Hubbard-Isolator in hoher Dimension, Dissertation, Marburg: Fachbereich Physik der Philipps-Universität, 2002.
-
a025565 n = a025565_list !! (n-1)
a025565_list = 1 : f a001006_list [1] where
f (x:xs) ys = y : f xs (y : ys) where
y = x + sum (zipWith (*) a001006_list ys)
-- Reinhard Zumkeller, Mar 30 2012
-
seq( add(binomial(i-2, k)*(binomial(i-k, k+1)), k=0..floor(i/2)), i=1..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 09 2001
# Alternatively:
a := n -> `if`(n=1,1,2*(-1)^n*hypergeom([3/2, 2-n], [2], 4)):
seq(simplify(a(n)),n=1..28); # Peter Luschny, Jan 30 2017
-
T[, 0] = 1; T[1, 1] = 2; T[n, k_] /; 0 <= k <= 2n := T[n, k] = T[n-1, k-2] + T[n-1, k-1] + T[n-1, k]; T[, ] = 0;
a[n_] := T[n-1, n-1];
Array[a, 30] (* Jean-François Alcover, Jul 30 2018 *)
-
def A():
a, b, n = 1, 1, 1
yield a
while True:
yield a + b
n += 1
a, b = b, ((3*(n-1))*a+(2*n-1)*b)//n
A025565 = A()
print([next(A025565) for in range(28)]) # _Peter Luschny, Jan 30 2017
A025566
a(n) = number of (s(0), s(1), ..., s(n)) such that every s(i) is a nonnegative integer, s(0) = 0, s(1) = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = sum of numbers in row n+1 of the array T defined in A026105. Also a(n) = T(n,n), where T is the array defined in A025564.
Original entry on oeis.org
1, 1, 1, 3, 8, 22, 61, 171, 483, 1373, 3923, 11257, 32418, 93644, 271219, 787333, 2290200, 6673662, 19478091, 56930961, 166613280, 488176938, 1431878079, 4203938697, 12353600427, 36331804089, 106932444885, 314946659951, 928213563878
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..2100
- Jean-Luc Baril, Richard Genestier, Sergey Kirgizov, Pattern distributions in Dyck paths with a first return decomposition constrained by height, arXiv:1911.03119 [math.CO], 2019.
- C. Dalfó, M. A. Fiol, and N. López, New results for the Mondrian art problem, arXiv:2007.09639 [math.CO], 2020.
- D. E. Davenport, L. W. Shapiro and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012), #P33. - From _N. J. A. Sloane_, May 11 2012
- Christian Krattenthaler, Daniel Yaqubi, Some determinants of path generating functions, II, arXiv:1802.05990 [math.CO], 2018; Adv. Appl. Math. 101 (2018), 232-265.
- Donatella Merlini, Massimo Nocentini, Algebraic Generating Functions for Languages Avoiding Riordan Patterns, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.3.
-
List([0..30],i->Sum([0..Int(i/2)],k->Binomial(i-2,k)*Binomial(i-k,k))); # Muniru A Asiru, Mar 09 2019
-
seq( sum('binomial(i-2,k)*binomial(i-k,k)', 'k'=0..floor(i/2)), i=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 09 2001
-
CoefficientList[Series[x+(2x(x-1))/(1-3x-Sqrt[1-2x-3x^2]),{x,0,30}],x] (* Harvey P. Dale, Jun 12 2016 *)
A025568
a(n) = T(n,n+2) where T is the array defined in A025564.
Original entry on oeis.org
1, 5, 19, 65, 211, 665, 2058, 6294, 19095, 57607, 173096, 518596, 1550367, 4627455, 13795176, 41088456, 122297643, 363828663, 1081966875, 3216725841, 9561635853, 28418162003, 84455354206, 250982289650, 745860104145, 2216567725281
Offset: 1
First differences are pairwise sums of
A025181.
A025567
a(n) = T(n,n+1), where T is the array defined in A025564.
Original entry on oeis.org
1, 4, 13, 40, 120, 356, 1050, 3088, 9069, 26620, 78133, 229384, 673699, 1979628, 5820195, 17121312, 50394579, 148413996, 437324919, 1289330520, 3803175474, 11223840012, 33139076292, 97889042384, 289276841475, 855205791076, 2529279459099
Offset: 1
- Michael De Vlieger, Table of n, a(n) for n = 1..1000
- Jean-Luc Baril, Richard Genestier, Sergey Kirgizov, Pattern distributions in Dyck paths with a first return decomposition constrained by height, arXiv:1911.03119 [math.CO], 2019.
- Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, arXiv preprint arXiv:1203.6792 [math.CO], 2012 and J. Int. Seq. 17 (2014) #14.1.5
-
T[, 0] = 1; T[1, 1] = 2; T[n, k_] /; 0 <= k <= 2n := T[n, k] = T[n-1, k-2] + T[n-1, k-1] + T[n-1, k]; T[, ] = 0;
a[n_] := T[n+1, n+3];
Array[a, 27] (* Jean-François Alcover, Oct 30 2018 *)
-
x='x+O('x^66); Vec((x^2-1-sqrt(1+x)*(x^2+2*x-1)/sqrt(1-3*x))/(2*x^3)) \\ Joerg Arndt, May 01 2013
A025574
T(2n,n+1), where T is the array defined in A025564.
Original entry on oeis.org
1, 10, 61, 356, 2058, 11892, 68860, 399828, 2328066, 13591364, 79538750, 466489520, 2741310614, 16137748980, 95152639095, 561856988100, 3322001296650, 19664909435556, 116535288360106, 691284470658376, 4104450497833036, 24390520567203960, 145053186645586383
Offset: 1
-
f:= n -> coeff((y^2+2*y+1)*(y^2+y+1)^(2*n-2),y,n+1);
map(f, [$1..30]); # Robert Israel, Sep 07 2019
A025569
T(2n-1,n), where T is the array defined in A025564.
Original entry on oeis.org
1, 4, 22, 120, 665, 3732, 21153, 120835, 694590, 4013088, 23284424, 135580865, 791862354, 4637009300, 27215510265, 160053426720, 942939231825, 5564024727096, 32878367902380, 194530139772844, 1152303896900338, 6832908809693304, 40556775927067299, 240938382783554100
Offset: 1
-
T(n, k) = if( k<0 || k>2*n, 0, if(n==0, 1, polcoeff( (1 + x + x^2)^n, k)+ polcoeff( (1 + x + x^2)^(n-1), k-1)));
a(n) = T(2*n, n+1); \\ Michel Marcus, Sep 08 2019
A025570
a(n) = T(2n,n), where T is the array defined in A025564.
Original entry on oeis.org
1, 2, 8, 40, 211, 1148, 6369, 35816, 203424, 1164228, 6703372, 38785840, 225325940, 1313494396, 7679038865, 45006411960, 264357297375, 1555762562100, 9171399730944, 54148782940112, 320136500713070, 1895036382245032, 11230166960501463, 66619011999761208, 395563260817743219
Offset: 1
A025571
a(n) = T(3n,n), where T is the array defined in A025564.
Original entry on oeis.org
1, 3, 19, 140, 1090, 8749, 71604, 593997, 4976785, 42016975, 356879250, 3046096983, 26105109424, 224485080580, 1936029865870, 16738879226139, 145041018993018, 1259189426140919, 10950454909118725, 95374995078513150, 831822673255797630, 7263789225782699928
Offset: 1
A025572
a(n) = T(4n,n), where T is the array defined in A025564.
Original entry on oeis.org
1, 4, 34, 330, 3381, 35700, 384307, 4193020, 46203670, 513011312, 5730482707, 64324536822, 724966763955, 8198552413800, 92985865982415, 1057267681773972, 12047638469222921, 137547814582468048, 1573060924386848400, 18017644508154675426, 206653990802794950415
Offset: 1
A025573
a(n) = T(2n,n-1), where T is the array defined in A025564.
Original entry on oeis.org
1, 4, 19, 98, 526, 2892, 16159, 91338, 520794, 2989688, 17256275, 100046894, 582204290, 3398722420, 19894375665, 116724946350, 686260868346, 4042058735880, 23846068472626, 140882925528892, 833421929615236, 4936088399361876, 29266184138206509, 173689743532678182
Offset: 1
Showing 1-10 of 15 results.
Comments