A025600 Number of n-move knight paths on 8 X 8 board from given corner to same corner.
1, 0, 2, 0, 16, 0, 264, 0, 6828, 0, 218192, 0, 7555444, 0, 269039512, 0, 9671837852, 0, 348829877760, 0, 12595130308612, 0, 454944702478600, 0, 16435098767896556, 0, 593753325451468144, 0, 21450960845508768532, 0, 774978877336933136632, 0
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
Programs
-
Maple
b:= proc(n, i, j) option remember; `if`(n<0 or i<0 or i>7 or j<0 or j>7, 0, `if`({n, i, j}={0}, 1, add(b(n-1, i+r[1], j+r[2]), r=[[1, 2], [1, -2], [-1, 2], [-1, -2], [2, 1], [2, -1], [-2, 1], [-2, -1]]))) end: a:= n-> b(n, 0, 0): seq(a(n), n=0..40); # Alois P. Heinz, Jun 28 2012
-
Mathematica
b[n_, i_, j_] := b[n, i, j] = If[n<0 || i<0 || i>7 || j<0 || j>7, 0, If[Union[{n, i, j}] == {0}, 1, Sum[b[n-1, i+r[[1]], j+r[[2]]], {r, {{1, 2}, {1, -2}, {-1, 2}, {-1, -2}, {2, 1}, {2, -1}, {-2, 1}, {-2, -1}}}]]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 28 2015, after Alois P. Heinz *)
Formula
From Vaclav Kotesovec, Nov 26 2012: (Start)
G.f.: 1 - 2495/3704 - (-2495 + 257062*x^2 - 10940636*x^4 + 261002480*x^6 - 3944912606*x^8 + 40234628876*x^10 - 286888584304*x^12 + 1458140925208*x^14 - 5325997352347*x^16 + 13961752450926*x^18 - 25982840678332*x^20 + 33572692661080*x^22 - 28997305139008*x^24 + 15706751871616*x^26 - 4743107684352*x^28 + 598878986240*x^30)/(3704*(-1+x)*(1+x)*(-1+2*x)*(1+2*x)*(1 - 3*x - 27*x^2 + 29*x^3 + 162*x^4 - 42*x^5 - 276*x^6 - 16*x^7 + 96*x^8)*(1 + 3*x - 27*x^2 - 29*x^3 + 162*x^4 + 42*x^5 - 276*x^6 + 16*x^7 + 96*x^8)*(1 - 38*x^2 + 546*x^4 - 3712*x^6 + 12253*x^8 - 17754*x^10 + 7408*x^12))
Nonzero terms a(n+2)/a(n) tends to 36.12804064450295915...
(End)