cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025600 Number of n-move knight paths on 8 X 8 board from given corner to same corner.

Original entry on oeis.org

1, 0, 2, 0, 16, 0, 264, 0, 6828, 0, 218192, 0, 7555444, 0, 269039512, 0, 9671837852, 0, 348829877760, 0, 12595130308612, 0, 454944702478600, 0, 16435098767896556, 0, 593753325451468144, 0, 21450960845508768532, 0, 774978877336933136632, 0
Offset: 0

Views

Author

Keywords

Programs

  • Maple
    b:= proc(n, i, j) option remember;
          `if`(n<0 or i<0 or i>7 or j<0 or j>7, 0, `if`({n, i, j}={0},
          1, add(b(n-1, i+r[1], j+r[2]), r=[[1, 2], [1, -2], [-1, 2],
          [-1, -2], [2, 1], [2, -1], [-2, 1], [-2, -1]])))
        end:
    a:= n-> b(n, 0, 0):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 28 2012
  • Mathematica
    b[n_, i_, j_] := b[n, i, j] = If[n<0 || i<0 || i>7 || j<0 || j>7, 0, If[Union[{n, i, j}] == {0}, 1, Sum[b[n-1, i+r[[1]], j+r[[2]]], {r, {{1, 2}, {1, -2}, {-1, 2}, {-1, -2}, {2, 1}, {2, -1}, {-2, 1}, {-2, -1}}}]]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 28 2015, after Alois P. Heinz *)

Formula

From Vaclav Kotesovec, Nov 26 2012: (Start)
G.f.: 1 - 2495/3704 - (-2495 + 257062*x^2 - 10940636*x^4 + 261002480*x^6 - 3944912606*x^8 + 40234628876*x^10 - 286888584304*x^12 + 1458140925208*x^14 - 5325997352347*x^16 + 13961752450926*x^18 - 25982840678332*x^20 + 33572692661080*x^22 - 28997305139008*x^24 + 15706751871616*x^26 - 4743107684352*x^28 + 598878986240*x^30)/(3704*(-1+x)*(1+x)*(-1+2*x)*(1+2*x)*(1 - 3*x - 27*x^2 + 29*x^3 + 162*x^4 - 42*x^5 - 276*x^6 - 16*x^7 + 96*x^8)*(1 + 3*x - 27*x^2 - 29*x^3 + 162*x^4 + 42*x^5 - 276*x^6 + 16*x^7 + 96*x^8)*(1 - 38*x^2 + 546*x^4 - 3712*x^6 + 12253*x^8 - 17754*x^10 + 7408*x^12))
Nonzero terms a(n+2)/a(n) tends to 36.12804064450295915...
(End)