cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025610 Numbers of form 2^i*6^j, with i, j >= 0; equivalently, numbers of the form 2^i*3^j with 0 <= j <= i.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 64, 72, 96, 128, 144, 192, 216, 256, 288, 384, 432, 512, 576, 768, 864, 1024, 1152, 1296, 1536, 1728, 2048, 2304, 2592, 3072, 3456, 4096, 4608, 5184, 6144, 6912, 7776, 8192, 9216, 10368, 12288, 13824, 15552, 16384, 18432
Offset: 1

Views

Author

Keywords

Crossrefs

Intersection of A025487 and A003586.

Programs

  • Mathematica
    n = 10^6; Flatten[Table[2^i*6^j, {i, 0, Log2[n]}, {j, 0, Log[6, n/2^i]}]] // Sort (* Amiram Eldar, Sep 26 2020 *)
  • PARI
    list(lim)=my(v=List(),t); for(j=0,logint(lim\=1,6), t=6^j; while(t<=lim, listput(v,t); t<<=1)); Set(v) \\ Charles R Greathouse IV, Dec 14 2016

Formula

From Vaclav Kotesovec, Sep 25 2020: (Start)
a(n) ~ exp(sqrt(2*log(2)*log(6)*n)) / sqrt(12).
Sum_{k>=1} 1/a(k) = 12/5. (End)
a(n) = 2^A025636(n) * 6^A025656(n). - R. J. Mathar, Jul 06 2025