cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A307162 a(n) is the smallest k such that A319100(k) = A025610(n).

Original entry on oeis.org

1, 3, 8, 7, 24, 21, 120, 56, 1320, 63, 168, 22440, 252, 840, 516120, 504, 9240, 819, 14967480, 2184, 157080, 3276, 613666680, 10920, 3612840, 6552, 28842333960, 120120, 15561, 104772360, 32760, 1528643699880, 2042040, 62244, 4295666760, 207480, 90189978292920, 46966920, 124488
Offset: 1

Views

Author

Jianing Song, Mar 27 2019

Keywords

Comments

A025610 is the range of A319100.
Let b = A319100. Note that:
- if k is an odd number, then b(2*k) = b(k), b(4*k) = 2*b(k), b(2^e*k) = 4*b(k) for e >= 3;
- if k is not divisible by 3, then b(3*k) = 2*b(k), b(3^e*k) = 6*b(k) for e >= 2;
- for all primes p > 3, if k is not divisible by p, then b(p^e*k) = b(p*k).
As a result, it is easy to see that for every n, a(n) is not congruent to 2 modulo 4 and is not divisible by 16 or 27 or p^2 for any prime p > 3.

Crossrefs

Programs

  • PARI
    isA025610(n) = omega(6*n)==2&&valuation(n,2)>=valuation(n,3)
    b(n) = if(isA025610(n), i=1; while(A319100(i)!=n, i++); i)
    for(n=1, 216, if(isA025610(n), print1(b(n), ", "))) \\ See A319100 for its program
    
  • PARI
    p(j) = my(t=0,v=vector(j)); for(k=1, oo, if(prime(k)%6==1, t++; v[t]=prime(k)); if(t==j, return(v)))
    q(i) = my(t=0,v=vector(i)); for(k=1, oo, if(prime(k)%6==5, t++; v[t]=prime(k)); if(t==i, return(v)))
    b(i,j) = {
    if(j<=1 && i<=2, my(M=[1,3,8;7,21,56]); return(M[j+1,i+1]));
    if(j==0 && i>=3, my(Q=q(i-3)); return(24*prod(k=1, i-3, Q[k])));
    if(j>=2 && i<=2, my(P=p(j-1), w=[9,36,72]); return(w[i+1]*prod(k=1, j-1, P[k])));
    if(j>=1 && i>=3, my(P=p(j), Q=q(i-2)); return(prod(k=1, j-1, P[k])*8*prod(k=1, i-3, Q[k])*min(9*Q[i-2], 3*P[j])));
    }
    list(lim) = my(v=A025610(lim), u=vector(#v)); for(k=1, #v, my(i=valuation(v[k],2)-valuation(v[k],3), j=valuation(v[k],3)); u[k]=b(i,j)); u \\ Jianing Song, Jun 04 2019, See A025610 for its program

Formula

Let p(j) = A002476(j), q(i) = A007528(i), P(j) = Product_{k=1..j} p(k) = A121940(j) if j > 0, Q(i) = Product_{k=1..i} q(k) = A057130(i) if i > 0. If A025610(n) = 2^i*6^j, then:
(a) if i = 0, then a(n) = 1 if j = 0, 7 if j = 1 and 9*P(j-1) if j >= 2;
(b) if i = 1, then a(n) = 3 if j = 0, 21 if j = 1 and 36*P(j-1) if j >= 2;
(c) if i = 2, then a(n) = 8 if j = 0, 56 if j = 1 and 72*P(j-1) if j >= 2;
(d) if i >= 3, then a(n) = 24*Q(i-3) if j = 0 and P(j-1)*8*Q(i-3)*min{9*q(i-2), 3*p(j)} if j >= 1. [Rewritten by Jianing Song, Jun 04 2019]

A343329 a(n) is the largest positive integer that is abundant and has the same prime signature as A025610(n) or 0 if no such number exists.

Original entry on oeis.org

0, 0, 0, 0, 0, 20, 0, 104, 0, 196, 464, 0, 1372, 1952, 0, 15376, 7232, 17576, 0, 119072, 32128, 476656, 0, 1032256, 130304, 7263392, 0, 8064128, 14776336, 522752, 131096512, 0, 66324736, 458066416, 2087936, 2024096128, 0, 533729792, 16649257024, 8382464, 33759290624, 27027081632, 0
Offset: 1

Views

Author

David A. Corneth, Apr 12 2021

Keywords

Comments

a(n) = 0 if A025487(n) is a power of 2 or A025487(n) = 6.

Examples

			a(6) = 20 as A025610(6) = 12 and has prime signature (1, 2) as it is 2^(2) * 3^(1). The largest abundant number with prime signature (1, 2) is 20 = 2^(2) * 5^(1).
		

Crossrefs

A025629 Numbers of form 6^i*10^j with i, j >= 0.

Original entry on oeis.org

1, 6, 10, 36, 60, 100, 216, 360, 600, 1000, 1296, 2160, 3600, 6000, 7776, 10000, 12960, 21600, 36000, 46656, 60000, 77760, 100000, 129600, 216000, 279936, 360000, 466560, 600000, 777600, 1000000, 1296000, 1679616, 2160000, 2799360, 3600000, 4665600
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^6; Flatten[Table[6^i*10^j, {i, 0, Log[6, n]}, {j, 0, Log10[n/6^i]}]] // Sort (* Amiram Eldar, Sep 26 2020 *)
  • PARI
    list(lim)=my(v=List(), N); for(n=0, logint(lim\=1, 10), N=10^n; while(N<=lim, listput(v, N); N*=6)); Set(v) \\ Charles R Greathouse IV, Jan 10 2018

Formula

Sum_{n>=1} 1/a(n) = (6*10)/((6-1)*(10-1)) = 4/3. - Amiram Eldar, Sep 26 2020
a(n) ~ exp(sqrt(2*log(6)*log(10)*n)) / sqrt(60). - Vaclav Kotesovec, Sep 26 2020
a(n) = 6^A025663(n) * 10^A025688(n). - R. J. Mathar, Jul 06 2025

A025627 Numbers of form 6^i*8^j, with i, j >= 0.

Original entry on oeis.org

1, 6, 8, 36, 48, 64, 216, 288, 384, 512, 1296, 1728, 2304, 3072, 4096, 7776, 10368, 13824, 18432, 24576, 32768, 46656, 62208, 82944, 110592, 147456, 196608, 262144, 279936, 373248, 497664, 663552, 884736, 1179648, 1572864, 1679616, 2097152
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A025610.

Programs

  • Mathematica
    n = 10^6; Flatten[Table[6^i*8^j, {i, 0, Log[6, n]}, {j, 0, Log[8, n/6^i]}]] // Sort (* Amiram Eldar, Sep 26 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (6*8)/((6-1)*(8-1)) = 48/35. - Amiram Eldar, Sep 26 2020
a(n) ~ exp(sqrt(2*log(6)*log(8)*n)) / sqrt(48). - Vaclav Kotesovec, Sep 26 2020
a(n) = 6^A025661(n) * 8^A025674(n). - R. J. Mathar, Jul 06 2025

A025626 Numbers of form 6^i*7^j, with i, j >= 0.

Original entry on oeis.org

1, 6, 7, 36, 42, 49, 216, 252, 294, 343, 1296, 1512, 1764, 2058, 2401, 7776, 9072, 10584, 12348, 14406, 16807, 46656, 54432, 63504, 74088, 86436, 100842, 117649, 279936, 326592, 381024, 444528, 518616, 605052, 705894, 823543, 1679616, 1959552
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^6; Flatten[Table[6^i*7^j, {i, 0, Log[6, n]}, {j, 0, Log[7, n/6^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (6*7)/((6-1)*(7-1)) = 7/5. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(6)*log(7)*n)) / sqrt(42). - Vaclav Kotesovec, Sep 25 2020
a(n) = 6^A025660(n) * 7^A025668(n). - R. J. Mathar, Jul 06 2025

A166470 a(n) = 2^F(n+1)*3^F(n), where F(n) is the n-th Fibonacci number, A000045(n).

Original entry on oeis.org

2, 6, 12, 72, 864, 62208, 53747712, 3343537668096, 179707499645975396352, 600858794305667322270155425185792, 107978831564966913814384922944738457859243070439030784
Offset: 0

Views

Author

Matthew Vandermast, Nov 05 2009

Keywords

Crossrefs

Subsequence of A025610 and hence of A003586 and A025487.

Programs

  • Magma
    [2^Fibonacci(n+1)*3^Fibonacci(n): n in [0..14]]; // G. C. Greubel, Jul 29 2024
    
  • Mathematica
    3^First[#] 2^Last[#]&/@Partition[Fibonacci[Range[0,12]],2,1] (* Harvey P. Dale, Aug 20 2012 *)
  • PARI
    a(n)=2^fibonacci(n+1)*3^fibonacci(n) \\ Charles R Greathouse IV, Sep 19 2022
    
  • SageMath
    [2^fibonacci(n+1)*3^fibonacci(n) for n in range(15)] # G. C. Greubel, Jul 29 2024

Formula

a(n) = A000301(n+1)*A010098(n).
For n > 1, a(n) = a(n-1)*a(n-2).
For m > 1, n > 1, A166469(A002110(m)*(a(n)^k)/12) = k*Fibonacci(m+n).
A166469(a(n)) = Fibonacci(n+2) + 1 = A001611(n+2).
a(n) = 2 * A174666(n+1). - Alois P. Heinz, Sep 16 2022
a(n) = 2^(Fibonacci(n+1) + c*Fibonacci(n)), with c=log_2(3). Cf. A000301 (c=1) & A010098 (c=2). - Andrea Pinos, Sep 29 2022
a(n) = A115033(2*n+1). - David Radcliffe, May 31 2025

Extensions

Typo corrected by Matthew Vandermast, Nov 07 2009

A025614 Numbers of form 3^i*6^j, with i, j >= 0.

Original entry on oeis.org

1, 3, 6, 9, 18, 27, 36, 54, 81, 108, 162, 216, 243, 324, 486, 648, 729, 972, 1296, 1458, 1944, 2187, 2916, 3888, 4374, 5832, 6561, 7776, 8748, 11664, 13122, 17496, 19683, 23328, 26244, 34992, 39366, 46656, 52488, 59049, 69984, 78732, 104976, 118098
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^6; Flatten[Table[3^i*6^j, {i, 0, Log[3, n]}, {j, 0, Log[6, n/3^i]}]] // Sort (* Amiram Eldar, Sep 26 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (3*6)/((3-1)*(6-1)) = 9/5. - Amiram Eldar, Sep 26 2020
a(n) ~ exp(sqrt(2*log(3)*log(6)*n)) / sqrt(18). - Vaclav Kotesovec, Sep 26 2020
a(n) = 3^A025641(n) *6^A025657(n). - R. J. Mathar, Jul 06 2025

A025636 Exponent of 2 (value of i) in n-th number of form 2^i*6^j.

Original entry on oeis.org

0, 1, 2, 0, 3, 1, 4, 2, 5, 0, 3, 6, 1, 4, 7, 2, 5, 0, 8, 3, 6, 1, 9, 4, 7, 2, 10, 5, 0, 8, 3, 11, 6, 1, 9, 4, 12, 7, 2, 10, 5, 0, 13, 8, 3, 11, 6, 1, 14, 9, 4, 12, 7, 2, 15, 10, 5, 0, 13, 8, 3, 16, 11, 6, 1, 14, 9, 4, 17, 12, 7, 2, 15, 10, 5, 18, 0, 13, 8, 3, 16, 11, 6, 19, 1, 14, 9, 4, 17, 12, 7, 20, 2
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A025610.

Programs

  • Maple
    with(priqueue):
    initialize(pq):
    insert([-1,0,0],pq):
    R:= NULL:
    for count from 1 to 100 do
      t:= extract(pq);
      R:= R, t[2];
      insert([t[1]*2,t[2]+1,t[3]],pq);
      if t[2] = 0 then insert([t[1]*6,0,t[3]+1],pq) fi;
    od:
    R; # Robert Israel, Sep 27 2024

A279537 Numbers of the form 2^i * 6^j * 30^k.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 216, 240, 256, 288, 360, 384, 432, 480, 512, 576, 720, 768, 864, 900, 960, 1024, 1080, 1152, 1296, 1440, 1536, 1728, 1800, 1920
Offset: 1

Views

Author

Keywords

Crossrefs

Intersection of A025487 and A051037.
Cf. A025610.

Programs

  • Mathematica
    mx = 6000; Take[ Sort[ Flatten[ Table[2^i*6^j*30^k, {i, 0, Log[2, mx]}, {j, 0, Log[6, mx]}, {k, 0, Log[30, mx]}]]], 60] (* Robert G. Wilson v, Dec 14 2016 *)
  • PARI
    list(lim)=my(v=List(),x,y); for(k=0,logint(lim\=1,30), y=30^k; for(j=0,logint(lim\y,6), x=y*6^j; while(x<=lim, listput(v,x); x<<=1))); Set(v)

Formula

Sum_{n>=1} 1/a(n) = 72/29. - Amiram Eldar, Feb 18 2021

A025692 Index of 2^n within sequence of numbers of form 2^i*6^j.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 12, 15, 19, 23, 27, 32, 37, 43, 49, 55, 62, 69, 76, 84, 92, 101, 110, 119, 129, 139, 150, 161, 172, 184, 196, 208, 221, 234, 248, 262, 276, 291, 306, 322, 338, 354, 371, 388, 406, 424, 442, 461, 480, 499, 519, 539, 560, 581, 602, 624, 646, 669, 692, 715
Offset: 0

Views

Author

Keywords

Comments

Positions of zeros in A025656. - R. J. Mathar, Jul 06 2025

Crossrefs

Programs

  • Maple
    N:= 100: # for a(0)..a(N)
    S:= sort([seq(seq(2^i*6^j,i=0..ilog2(2^N/6^j)),j=0..floor(log[6](2^N)))]):
    seq(ListTools:-BinarySearch(S,2^i),i=0..N); # Robert Israel, Jan 12 2021

Extensions

Offset corrected by Robert Israel, Jan 12 2021
Showing 1-10 of 13 results. Next